login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Bitriangular permutations.
(Formerly M4902)
4

%I M4902 #39 Apr 12 2024 14:00:06

%S 1,13,73,301,1081,3613,11593,36301,111961,342013,1038313,3139501,

%T 9467641,28501213,85700233,257493901,773268121,2321377213,6967277353,

%U 20908123501,62736953401,188236026013,564758409673,1694375892301,5083329003481,15250389663613

%N Bitriangular permutations.

%C Prepending the term 0 and setting the offset to 0 makes this sequence row 3 of A371761. In this form it can be generated by the Akiyama-Tanigawa algorithm for powers (see the Python script). - _Peter Luschny_, Apr 12 2024

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Colin Barker, <a href="/A006230/b006230.txt">Table of n, a(n) for n = 4..1000</a>

%H Irving Kaplansky and John Riordan, <a href="http://projecteuclid.org/euclid.dmj/1077473616">The problem of the rooks and its applications</a>, Duke Mathematical Journal 13.2 (1946): 259-268.

%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.

%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992

%H J. Riordan, <a href="/A006230/a006230.pdf">Letter to N. J. A. Sloane, Dec. 1976</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (6,-11,6).

%F a(n) = 12*S(n-2) + 1, with S(n)=A000392(n) the Stirling numbers of second kind, 3rd column. - _Ralf Stephan_, Jul 07 2003

%F a(n+3) = Sum_{i=1..3} A008277(n,i) * A008277(3,i) * i!^2. - Brian Parsonnet, Feb 25 2011

%F From _Colin Barker_, Dec 27 2017: (Start)

%F G.f.: x^4*(1 + x)*(1 + 6*x) / ((1 - x)*(1 - 2*x)*(1 - 3*x)).

%F a(n) = 12*(3 - 3*2^(n-2) + 3^(n-2))/6 + 1.

%F a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) for n>6

%F (End)

%p A006230:=-(z+1)*(6*z+1)/(z-1)/(3*z-1)/(2*z-1); # Conjectured by _Simon Plouffe_ in his 1992 dissertation.

%t 12*StirlingS2[n+1, 3]+1; (* Brian Parsonnet, Feb 25 2011 *)

%t Sum[ StirlingS2[n,i] * StirlingS2[ 3,i ] * i!^2, {i,3} ]; (* alternative, Brian Parsonnet, Feb 25 2011 *)

%o (PARI)

%o Vec(x^4*(1 + x)*(1 + 6*x) / ((1 - x)*(1 - 2*x)*(1 - 3*x)) + O(x^40))

%o \\ _Colin Barker_, Dec 27 2017

%o (Python) # Using the Akiyama-Tanigawa algorithm for powers from A371761.

%o print(ATPowList(3, 27)) # _Peter Luschny_, Apr 12 2024

%Y Cf. A136301 (row 4), A371761 (row 3).

%K nonn,easy

%O 4,2

%A _N. J. A. Sloane_