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Paul K, Stockmeyer
College of William and Mary

ABSTRACT

The necklace problem has proved to be both a sound pedagogical device in

teaching enumeration theory and a valuable counting tool with several graphical

applications. In this Paper we solve the more general charm bracelet problem and

provide’ two applications for which the necklace problem in not sufficient,

We set the stage in Section 1 by providing a brief review of the necklace

problem. This serves as 3 basis for comparison in Section 2, where we discuss the

charm bracelet problem and derive its solution. Sections 3 and 4 contain nontri-

vial graphical applications of the results of Section 2.

Definitions for all graphical terms and concepts can be found in [3]. PFor

further background and broader treatment of topics of an enumerative nature, [5]

should be consulted.
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- THE CHARM BRACELET PROBLEM AND ITS APPLICATIONS .
1. NECKLACES £
> ol
J 4 The necklace problem asks for the number N of closed necklaces with n equally
‘ spaced beads, each of which is one of m colors or types. Two necklaces are con-
f : sidered the same if one can be rotated or reflected into the other. The 6 distinct
to

necklaces for n = 4, m = 2 are illustrated in Figure 1.
uni
roo

fung
Figure 1. Examples of Necklaces

enumeration methods of PSlya [11), can

for

A full discussion of the solution, using the

be found either in [5, page 44], [3, page 183], or [4]. Essentially one uses the flat |
cycle index Z(D,) of the dihedral group of degree n, defined by el
corres
(1) Z(Dy) = Z(Dy; 21429,29,.0.,2,) e
T ol 1/2 2,2, (112 n odd affect
e hn ani * 1/4 (zl2 z9 (=2)/2 , zznlz),nevcn one way
images,
The answer is obtained by replacing each variable z; with the integer m: As with
(2) N=2(,; m,m,...,m) . either ,
We note that Z(Dk; 2,2,2,2) = 6, in agreement with Figure 1. Figure
In many applications, each type of bead is assigned a weight, typically a of two ¢
: non-negative integer. The weight of a necklace is defined to be the sum of the Sup
weight of its beads. If bj is the number of types of beads with weight 1, then charms.
b(x) = Zbixi is the generating function for beads by weight, frequently called total of
are ¢® 44

Similarly, if N; is the number of necklaces with

the figure counting series.
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weight i, then the generating function N(x) = [Nix1 is often called the con-

figuration counting series. Pélya's Theorem [11] relates these tvo series to

obtain the formula

(€)) N(x) = 2(Dy; b(x),b(x?),...,bGxD)) . r

Equation (2) is clearly a special case of (3), obtained by setting x equal
to 1.

A typical graphical application of the necklace problem is the enumeration of
unicyclic graphs, described in qg?, Page 148). In this situation a 'bead' is a (E};
rooted tree, whose weight is its number of points. If t(x) is the generating
function for rooted trees, then it follows that the generating function Uy (x)
for unicyclic graphs with cycle ‘length n is

(%) Up() = 2(D;; £(x),t(x2),...,e(x) .

2. CHARM BRACELETS

The charm bracelet problem is similar to the necklace problem except that
flat charms are attached to the frame instead of beads. These charms are assumed jh

to be firmly fixed to the frame and cannot be rotated or turned over unless the

corresponding operation is performed on the entire necklace. Some charms are ‘l

asymmetric; that is, a reflection of the necklace (and hence its charms) does not

affect their appearance. They can be fastened to the frame in essentially only i R
one way. Other charms are non-symmetric. They are different from their mirror
images, and can be attached to the frame in either of two possible orientations.
As with necklaces, two charm bracelets are considered the same if one can be
either rotated or reflected into the other. We illustrate these concepts in

Figure 2, which contains the seven bracelets with three charms drawn from a stock

of two types, one symmetric and one non-symmetric.,
. Suppose we have a types of symmetric charms and b types of non-symmetric
charms. Since each non-symmetric charm can be attached in two ways, there is a

' total of ¢ = a + 2b possibilities at each position on the bracelet. Thus there

are c” different "fixed" or "positioned" bracelets. In order to determine the
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number of inequivalent bracelets, we use the famous orbit counting formula due to

Buraside [1, page 191].

oyoyoyer
O o

Figure 2. Examples of Charm Bracelets

Burnside's Theorem. Let G be a permutation group acting on a set S, and for each

8£6 , let H(g) be the number of elements of § fixed by g. The number 0(C) of orbits
of G is given by

) 0(c) = ITII & H(g).

In applying this theorem, we take S to be the set of c® different fixed
bracelets. For G we take the group induced on S by the dihedral group D, of de-
gree n acting on the bracelet frame. Thus for each of the n rotations and n

reflections of D, we must determine the number of bracelets that are left unchanged

by such action.

We consider first the n rotations. As is well known, for each integer i
dividing n, there are $(i) rotations each consisting of d/i cycles of length 1.
Clearly a bracelet will be unchanged by such rotation if and only if the same

charm is attached, with the same orientation, to each place in any cycle. Thus

there are c“/i bracelets fixed by each of the ¢(i) rotations, for i dividing n.

t.

br

n/2
Pla'

ref]

of u:

The nuryg

charmg
(7)

We obser:
Figure 3,
If o

the foljg,
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Murnside’s
and Jet ¢ 3

SES g assi,

€rating fung

(8)




unchanged

ath 1.

Thus

343

In considering the n reflectians, it is convenient to

consider firse the case
n odd. 1In this case a reflection consists of (n-1)/2 transpositions and one fixed
place. 1In order for a bracelet to be fixed by a reflection, the same charm muse
occur on both places of any transposition. Moreover, a symmetric charm must pe at-

tached at the fixed place. Thus for each of the n reflections there are a-c(n'l)lz

bracelets fixed by that action.
In the even cage there

are two types of reflections. Half of them consist of

while the other half contain (n-2)/2 transpositions and 2 fixed

Arguing as above, there are c

n/2 transpositions,

Places. n/2 bracelets fixed by the firse type of

reflection and a2.c(n~2)/2 bracelets unchanged by the second,

of use later. We define the modified cycle index

Z(Dp*) of the group D, by
(6) Z2(D.*) = z(p

"3 21,22,...,2q,y)

3 (n-1)/2
-1 o (1)z,M1 4 ‘—7 752 : g
2n
lln
% yzzz(n_aelz + zZn/Z p n even

2

The number of charm br drawn from a store of a symmetric

acelets with n charms,

charms and b non-symmetric charms, with ¢ = a+ 2b, is then

(7 CB = Z(Dn*; €yCy.0.,c,a) .

We observe that 2(D4#*;3,3,3,1) = %(33 +2:3l +3.0.3) =7 4 agreement with
Figure 2,

If one wishes to use generating functions to count charm bracelets by weight,

the following weighted form of Burnside's theorem is needed. A proof can be found
in [3, page 180).

Burnside's Theoremz Weightq§ Form, Let G be a Permutation group acting on a set S,

and let w be a function that assigns a weight to each orbit of G, Each element

S€S is assigned the weight of the orbit in which it is contained. Then the gen-

erating function for orbits of ¢ by weight is

(8) 1. I (e
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where the product is over all se$ fixed by the permutation g.

A Again we take S to be set of c® different fixed bracelets. The generating :
functions for symmetric and non-symmetric charms are denoted a(x) = taixi ,» and 3
b(x) = Zb‘xi , respectively, and we define c(x) = a(x) + 2b(x) . CB(x) will denote ;
the generating function for charm bracelets by weight. It is an easy exercise to
show that in the case of charm bracelets, formula (8) can be computed from the Ea
modified cycle index of the group D, by replacing each variable z; with the series
c(x1) and the variable y by the series a(x). This yields the following main result:

Charm Bracelet Theorem. The generating function CB(x) for charm bracelets with n
charms is given by ‘ 3
) CBGx) = Z(D*; c(xa), cxP),enn,ex™,alx) - |
If all the charms happen to be symmetric, we have b(x) = 0 and thus c(x) = a(x). 8syT
In this case equation (9) is jdentical to (3). Hence we see that the necklace pro- anc
blem can be viewed as a special case of the more general charm bracelet problem. two
3. TRIANGULATION OF POLYGONS
Our first application provides a new solution to a problem first solved by =
R. Guy [2] and subsequently solved by Moon and Moser {9] and by Harary and Palmer g
[5]. The problem is to determine the number of ways of dissecting a regular
(n + 2)-gon into n triangles by n-1 non-intersecting diagonals. Two dissections
that differ only by a rotatiom or reflection will be considered the same. It is
easy to verify that there is a unique dissection for n = 1, 2, and 3, while for =
n = 4 there are 3 distinct triangulations. -
Clea
We first must count verious classes of rooted triangulations. For m > 1, let C!.\ .
a, and b, denote the number of triangulations of '9.f3-f.fZ:fff_ffffff_ff_:_ff::f:__, L
n

-~

tric and non-symmetric exterior edge, respectively. For convenience we set ag = 1,
/ e —

representing a degenerate 2-gon, or edge. Further, we set Cp = an + 2bp , SO that %

n

¢, is the number of triangulations rooted at an oriented exterior edge. We define

a(x), b(x), and c(x) to be the generating functions corresponding to the sequences

a,, by, and c, respectively.
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It 1s easily seen (see, for example, [5]), that the function ¢(x) satisfies

the equation
(10) e(x) = 1 + x-c2(x)

which, when solved for c(x), vields

e _ronga
(1) e(x) = 1—-%;2‘L

Expanding, one obtains W
(12) c(x) = n-!-é;:% xn A’(Og

=14 x+ 22+ 5 4 242 4 4220 + 13258 4 420,7 & 1430x8
+ 4862x° + 16,796x10 4

a result apparently known to Euler.

\
In order to determine a(x), we note that a triangulated polygon rooted at a

symmetric exterfor edge can be constructed by first placing a triangle on the edge

and then attaching mirror image exterior-edge~rooted triangulated polygons to the

two new edges. Translated into generating functions, this implies

(13) a(x) = 1+ x-c(x?)

=1+ x+x3+ 25 4 5x7 4+ 14 4+

Then we have

(14) b(x) = F_Q‘.L;M

o x4 2% 4 7h e 2005 + g5t o+ 212x” + 715x8 + 2,424%%

Q.*k"(‘ + 8,398 &+ ... . A /;O

Ve now use the charm bracelet theorem to determine the generating function

F(x) for the number Fo of triangulated (n+2)

..——

=~gons rooted at one of the triangles.
e U S e )

Clearly such a polygon can be considered a bracelet of three charms, each of which

is an exterior-edge-rooted triangulated polygon. Thus we have

(15) Fx) = x 2(03%; c(x),c(x?),...,cM,a(x))

=% 0 + 2003 + a@mexd)) & Bplec,t 74

=x+ 22+ 223+ 6x% 4 16x% + 5225 + 17007 + 715%8

+ 2,424 + 8,398x10 4
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Another intermediate result we need is the number Rn of triangulated polygons
.

rooted at an interior edge. The corresponding generating function is again found

by using the charm bracelet theorem, this time with two charms. We have S:
I
(16) H(x) = Z(D,*; c(x)-1, a(x)-1) (ey r Ser 3
t
= x? + x>+ 5xb + 12x5 + 45x8 + 143x” + 511x8 + 1768x° noJ
b
P e b C):?g;
We will call an interior edge of a triangulated polygon svmmetric if the poly-
4
gon possesses an automorphism that interchanges the two triangles incident with the
p!
edge. The remaining intermediate result we need is the number I of polygons rooted
- is
9 at a symmetric interior edge. The generating function for this sequence can be
fe
shown to be
2 nu
(17) I(x) = e(x) - 1 C / /
A A
= x? 4 xb e sxb 1B a4 L
an
In order to determine the number Kn of unrooted triangulated polygons we fol-
- an
low the standard method for unrooted trees, developed by Otter [10) and applied
nug
: - repeatedly in [6]. In this case, the method yields
! :? aga
(18) K(x) = F(x) - H(x) + J(x) ; C>;7
= x4 x4 23+ 3%+ axd 4 1268 + 27x7 + 82x8 + 228x% + ...
3 of |
We can find a closed form for the coefficients of K(x) by using equations (10),
(13,, (15), (16), and (17) to express K(x) in terms of c(x) only, and then using the
ﬁ closed form for the coefficients of c(x) given by (12). If one interprets as zero
any term containing a nonintegral factorial, then the number K, can be expressed as
smal
as) Kk =L, 3(n-1)! i (n-2)! s
(n-1)! (n+2)! ~ 2((n-2)/2)! ((n+2)/2)! ((n-3)/2) ! ((n+1) /2! from
+ ((2n-2)/3) \ pair
3 (-173) (@91 02
L0
Incidentally, the number K16 is given incorrectly as 1,046,609 in both (2] and
[5]. The correct number is 983,244,
Asvmptotically, the first term of (19) is clearly the dominant one. [Ilsing Solvi

Sterling's formula, we find that
Kn A 22“_117—1/2'\-5/2.

(20)
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4. PROJECTIVE PLANE TREES
A plane tree is a tree that has been embedded in the (Euclidean) plane. Two
plane trees are ismorphic if there exists an orientation-preserving homeomorphismof

the plane onto itself that maps one onto the other. Plane trees have been counted

by Harary, Prins, and Tutte [7].

We define a projective plane tree, or PPT, as a tree that has been embedded in ; 6>f9-7—)
the real projective plane. Two PPT's are isomorphic if any homeomorphism of the !
projective plane onto itself maps one onto the other. Thus while a PPT is always
isomorphic to its mirror image, a pldne tree might not be. Consequently there are
fewer PPT's than plane trees on n points, for n > 7. 1In this section we count the
number of isomorphism classes of PPT's on n points for each positive integer n.

As usual, we must first obtain a few preliminary results. For n > 2 ve let a,

and bn denote now the number of planted PPI's on n + 1 points that are symmetric
ol- Bins, el
7 L, s and non-symmetric, respectively. Again we set €y = 8 + 2b, , so that now c, is the
w

——.

1

- number of planted plane trees on n + 1 points. Also, a(x), b(x), and c(x) will
Cff e

FERTFUAACSRE S

I.«V\) \
<€L“ \140“2/ again denote the corresponding generating functions.

The somewhat surprising fact that the numbers ¢n are again the Catalan numbers

Py of Section 3 was noted in [7]:
), . O@ *
@) ctx) = 2D 40 ﬂ | \@%

i “x + x2 4+ 2x3 + 5xb + 14x5 + 62x® + 132x7 + 42958 + 1430x9 4+ ... 4
e A planted PPT can be constructed by identifying the roots of any number of <
ram smaller planted PPT's. In particular, a symmetric planted PPT can be constructed l f
i from either none or one smaller symmetric planted PPT together with any number of v
E pairs of arbitrary planted plane trees. Thus F Tyt
! g
B (22) a(x) = x(1 + a(x) A + c(x?) + e2(?) + ...) , o
2] an ‘e

. x + a(x)) : 4

1 - c(x2) |

i
ip. Solving for a(x), we have 5 ng:
i = e
i (2 aw = :
l | Y
i = x + x2 + 2x3 + 3x% + 6x5 + 10x6 + 20x7 + 35x8 + 70x% + ... ! |

g = 5 S o -
2 Wk © C(®)
s B(\LTCS ‘

LS
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from which we ohtain / :
pPilan=s,
B(x) = S_(’_‘)_%..@ﬂ

(24) 607 7

A rooted PPT can clearly be considered as a charm hracelet in which the charms

= xb 4+ 4x® + 16x6 + 56x’ + 197x% + 680x" + ...

are planted plane trees. Letting R, denote the number of rooted PPT's with n poﬁt’s_‘ i
and R(X) the corresponding generating function, the charm bracelet theorem yields 2.
(25) R(x) = x/Z(n *; c(x), e(x?), ..., c(x™,a(x)), %
where the sum is taken from n = 0 to =. Explicitly, we have R
(26) R(x) = x + 32 + 2% + b + 9x7 + 21x5 + 56x’ + 155x° + 469x° 6 0 go e
3. Ea=

+1,480x20 + ...

A line-rooted PPT can be considered a bracelet th two charms. Thus the
6. ZEax:

generating function L(x) for line-rooted PPT's satisfies

@n L(x) = Z(Dp*; e(x), c(x?), a(x)) 7. SHac:
= x2 4 33 + 3P+ 6x0 + 1720 + 4bx’ + 133x® + 404x? + 1319x10 : g/

+ 12190 + ... é 0 e N'

9. Mocs

Further, it is easily seen that the generating function S(x) for PPT's rooted
M

at a symmetry edge is given by

y 10, t=a
(28) S(x) = e(x2) 11.. P6i-
R 10 , s =l

= x2 + x' + 2x +5x8+llox bee

To obtain the generating function T(x) for unrooted PPT's, we again utilize =L’V| %

Pr—m

_ the Otter formula,

(29) T(x) = R(x) - Lx) + S(x)

O T o ot PG P By S SR BNE )

+1750 & ... .

8 9

+ 65x (Z; Z) 2? z///
CONCLUSIONS
Neither of the two preceeding problems is new. At least three distinct solu-
tions to the triangulation problem have been published, and the number of projective

plane trees can be obtained from results in [8], although the answer is not given

explicitly. However, the method is new, and offers a unified approach to problems

previously solved on an ad hoc basis. The formulas can be used, for example,
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to solve almost any problem involving counting of configurations embedded in the

plane, where rotations and reflections of configurations
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