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A Note on Prime Number Sequences
Foeers & Masat
The work presented here considers prime numbers from the view

point used by Ulam [GLMU] and others [Br, Ro] in their work on
lucky numbers. In [GLMU], the lucky numbers were created by using
a sequence of sequences of natural numbers. The approach here is

similar and it also is intended to generate a renewed interest in

prime twins and their properties and applications.

We will use N - {1}, the set of natural numbers greater than
one. Starting with 2, delete every number greater than 2 that is
divisible by 2. The next smallest number remaining is 3, so delete
every number greater than 3 that is divisible by 3. Continuing, we
obtain the following sequence of sequences. We also have listed

the n-th deletion term, p,, used to create the next sequence.

The n-th Prime Number Seguences The n-th Deletion Term
a'=9{2,3, 4,5, ... } =N - {1} p, = 2

_az ={2,3,5,7, ... }=the odds, plus 2 p, =3
a>=1{2,3,57,11,13,... } = all twins, plus 2 ps = 5

a* =

{2,3,5,7,11,13,17,23,29, ... }. p, = 7

k+1

Since we delete multiples of p, to form a° ', we may characterize

a™ as a™ = a" - p{ xe€ea: x2p }. Moreover, if we view a"
in a double subscript manner, as [GLMU] did, then for each i in N,

lim aﬂ = p;, and in general, lim a" = P, the set of primes.

n —- o n — o
RESULT 1. There are an infinite number of primes.
Proof. Since each p, is prime and there are infinitely many
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numbers left after the deletion of the multiples of p, from a",

then there are infinitely many a"'s and p,.'s remaining. "

Since a° is the union of { 2, 3} and twins of the form 6x + 1
for some x in N, then in each subsequent sequence, either a left
or right twin is deleted, producing a singleton, or a singleton
produced earlier is deleted. Moreover, the process is periodic.
To see this, we define a second sequence of sequences: for each a",
let d" denote the sequence of differences between the terms of a".

If we let r denote the period of repeated digits, we then have:

The Difference Sequences "d™ r
al =1 1
a® =1, 2 1

3 _

d =1, 2, 2, 4 2
@& =1, 2, 2, 4, 2, 4, 2, 4, 6, 2, 6 8

2, 6, 6, 4, 2, 4, 6, 2, 6, 4, 2, 4, 2, 10, 2, 10 48

ve
e

Intuitively, the period of d" depends on the period of d _, and

p,. For example, to find r;, we use p, = 7 and, since r, = 8, a

4

"spanning" set from a' of nine numbers such as {7, 11, 13, 17, 19,
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23, 29, 31, 37}. The numbers deleted from a' to form a” then will
be 7 times each of these or { 49, ..., 259}. Note that the first
span of numbers is contained in the interval [ p,, p, + 30] and

that the second span is contained in [ pf, pf + 30p,]. That is,



30p, = 210 is the span of numbers needed for a period in a’. If we

use the binomial value B, = (1 - 1/2)° - (1 = 1/p,) with k = 4 to

delete multiples of 2, 3, 5, and 7 from [ 49, 259], then
r, = 259B, - 49B, = 210B, = 210(1-2:4°6)/(2:3°5°7) = 48.

In general, we will let s, denote the span of numbers needed for a

period in a. For k > 1 we then have by inspection that

s, = lem(pPy, -«s Peq) = P77 Peer T Sk1Peere

RESULT 2. If k is in N and greater than 2, then the sequence of
differences between the terms of the prime number sequence a“'! has
period r,,, given by ‘

Lo = L(pg = 1) = BsS,y = P(Syer) +
where B, = (1 - 1/2)"--(1 - 1/p,) and @ is Euler's phi-function.
Also, the sequence of periods is strictly increasing for all k > 1.

k

Proof. Deletions repeat in a® after s, numbers are processed,

producing ak¥!. Applying B, to [pf, pf + pS¢], we have
2
1 = B (P + 8) — Bpy
= ByPySy

= B Py (P1" " "Py-1)

= (py — 1) (P ~— 1) (p - 1)

= r (P, — 1).
That r,,, = BSi = @(Sy,) follows easily. Lastly, since p, is odd
for k > 1, then r, = r,,, implies that p, = 2, a contradiction. ]

For reference, and to gain insight into the structure of the d",

we list a few of the values provided by Result 2.
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Table of Values for the Difference Sequences ngn

O
5§é7 A 214
"7

k pk rk Sk
1 1 1 1
2 3 1 2
3 5 2 6
4 7 8 30
5 11 48 210
6 13 480 2310
7 17 5760 30030
n n-th prime (p,, - 1)¥r. ;4 P1" " "Pn-1

RESULT 3. Using the notation of Result 2, we also have:

a. The periods in a¥ can be characterized as
(*) {p+ (m -1)s, ..., MmS, — P, WS = 1, ms, + 1 }.

b. The size of the maximum gap in a* is g, = b - 1.
c. There exists at least one "2" in each period of 4,;
i.e., ms_ £ 1 are twins in a¥ for m =1, 2, ...
d. The maximum gap in d* first occurs in positions
r,+k-3 and r, . +k -1 of a.
e. There are arbitrarily large gaps in P.
Proof. (a). In ak, {x € ak: p, £ X < p, + s} is the first period.
Relative to it, consider I = (s, = p,, -.-, S, + p ] in N. Since

the next number remaining after pk-1 is p,, there are no numbers

between s, + p,_, and S, *+ Pyr and none between s, - p, and S, = Py

Moreover, one of p,, ...,P,.; divides each of number in I except s, %
1 and s, t p,. Thus we may rewrite the first period of a* as { Py
ceey S = Pyr S - 1, s, + 1}, Since the same pattern occurs in

each period, we may characterize the m-th period as in Equation *.
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(b). For { Py «++y S, = Pyr S = 1, 5 + 1, 5. + P}y the diff-
erence sequence ends with p, - 1, 2, and p, - 1; i.e., the maximum
gap in a“ is g, = P - 1.

(c). The proof of part Part (b) also shows that there is a "2"
in each period of d%, viz., the one corresponding to the twins
ms, £ 1 (m=1, 2, 3, ces) in ak.

(d). Since the start of d" shifts right with each new p,, g
will occur first in positions (r, - 2) + (k - 1) and r, + (k - 1)
of dk, and the result follows.

(e). Since g, = p, - 1 and the p, form an unbounded increasing

sequence, then there are arbitrarily large gaps in P. u

Note that the twins described in Result 3(c) may not be primes.
We next consider twins in ak; i.e., the 2's in d*. For example,
if n = 5, then a bound for the number of twins in one period of a’
is the bound for the number of twins in a period of a4, multiplied
by p, (the number of periods of r, needed for a repetition in a’),
minus r, (the number of deletions from a‘ generated by p,), plus 2
since p,(s, - 1) and p,(s, + 1) do not account for the deletion of
any 2's from a’. That is, b, 2 bp, - r, +2= 37 -8+ 2 =15.

Generalizing this example we have

RESULT 4. A lower bound for the number of sets of twins in a

period of a" is b Py - T + 2 , where b , is a lower bound for

n-1

1

the number of twins in a period of a"', and , and r__, are as
n-1 n-1

defined previously.

We note that this result parallels the lower bound result found
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for lucky twins in [Mas]: b, 2> (bt - r)lr, tl/rt + 2,
where t  is the n-th deletion term (not necessarily prime as here)
and [r,, t,] denotes the lecm( r,, t)). Since t = p, in the work
here, then ( r, p,) =1 and [r, t1/rt, = 1.

k+1

Since the (r, - 2) deletions which produce a” may not yield all

singletons, then b, is a lower bound for the number of sets of
twins in each r elements of a*''. Moreover, by Result 3(c), b, >
0 for all k > 1. There is, however, an important open question
here: is b, < b, for all n > 1? If so, it may tell us something
about the number or distribution of prime twins.

Lastly, we look at the relationship between prime twins and the
prime number sequences. An inspection of the prime twins in the a"

suggests that between a prime and its square there is at least one

set of prime twins. If this is true, then we would have

RESULT 5. a. If x and x + 2 are natural numbers such that
P, £ X and x + 2 < pf for some k, then they are prime twins.
b. If for each k in N there are natural numbers x and x + 2 in
the interval [p,, pf), then the number of prime twins is infinite.
Proof. For (a), suppose that x and x + 2 are in [p,, pf), viz.,

k

within a¥. In forming a*"'

, the deletions begin with pf, leaving x
and x + 2 as twins in each subsequent a". Thus, since x and x + 2
remain, they are prime twins.

The proof of Part (b) follows from Part (a). [
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