Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M3749 #28 Oct 21 2020 03:45:03
%S 5,6,10,13,15,22,35,37,51,58,91,115,123,187,235,267,403,427
%N Imaginary quadratic fields with class number 2 (a finite sequence).
%C n such that Q(sqrt(-n)) has class number 2.
%C The PARI code lists the imaginary quadratic fields Q(sqrt(-d)) with small class number and produces A003173 (class number 1), A005847 (2), A006203 (3).
%D J. M. Masley, Where are the number fields with small class number?, pp. 221-242 of "Number Theory, Carbondale 1979", Lect. Notes Math. 751 (1982).
%D P. Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 142.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Steven Arno, M. L. Robinson, Ferrell S. Wheeler, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa83/aa8341.pdf">Imaginary quadratic fields with small odd class number</a>, Acta Arith. 83 (1998), pp. 295-330.
%H David Masser, <a href="https://arxiv.org/abs/2010.10256">Alan Baker</a>, arXiv:2010.10256 [math.HO], 2020. See p. 24.
%H Keith Matthews, <a href="http://www.numbertheory.org/classnos/">Tables of imaginary quadratic fields with small class numbers</a>.
%H <a href="/index/Qua#quadfield">Index entries for sequences related to quadratic fields</a>
%t Select[Range[200], MoebiusMu[#] != 0 && NumberFieldClassNumber[Sqrt[-#]] == 2 &] (* _Alonso del Arte_, May 28 2015 *)
%o (PARI) { bnd = 10000; S = vector(10,X,[]); for (i = 1, bnd, if (issquarefree(i), n = qfbclassno(if(i%4==3,-i,-4*i)); if (n<11, S[n] = concat(S[n],i), ), )); } \\ Robert Harley (Robert.Harley(AT)inria.fr)
%K nonn,fini,full
%O 1,1
%A _N. J. A. Sloane_.