


FURTHER RESULTS ON A PROBLEM OF DOEHLERT AND KLEE

R. G. Stanton and S. A. Vanstone

ABSTRACT. In this paper we investigate a class of (r,))-designs which
arises naturally in the consideration of a certain experimental design.

These designs satisfy the condition

r2 =ib ,

where b is the number of blocks. We are interested in determining the
maximum number of elements in such designs. We obtain some general

results in this area and settle some specific values.

1. Introduction.

In [3] it is shown that the vertex set of the d-dimensional
cuboctahedron is useful as an experimental design for estimating a

response over a spherical region.

Doehlert and Klee [2] considered the problem of rotating such a
design so as to minimize the number of levels at which the experimental
variables are required to appear. They show that this problem is
intimately related to the problem of finding m proper subsets

L s Xysenes X of {1,2,...,v} such that

% 1%, |

(1.1) =v
Xsn Xt

for all s # t.

1f one lets Fm be any family of equicardinal subsets with
property (1.1), then it is desired to evaluate T*(v), the maximum value

of F .
m

If the cardinality of each element of Fm is denoted by k, then

condition (1.1) shows that |Xs n Xt| is a constant d and that

(1.2) K2 = vd.

We prefer to consider the dual of the above problem and hence require the

following definitions.
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An  (r,A\)-design D 1is a collection of b subsets (called
blocks, some of which may be empty), chosen from a finite set of v
elements (called varieties), such that
(1) every variety occurs in r blocks;
(ii) every unordered pair of distinct varieties is contained in -

precisely X blocks.

If every block of D has the same cardinality k, then D 1is
called a balanced incomplete block design (BIBD). The parameters of a
BIBD are listed as (v,b,r,k,A).

Suppose we have a family Fm of equicardinal subsets of
size r, taken from a set of b elements. If we interchange the roles
of elements and subsets in the incidence relation of Fm’ we obtain an

(r,A)-design D having b blocks and m varieties in which

(1.3) r- = 2ib

We shall refer to any (r,A)-design satisfying (1.3) as a Doehlert-Klee
design (or DK-design). The problem then is to find, for a given b,

the maximum v such that a DK-design exists; we shall call this maximum
K(b). Note that the original requirement that Fm contain proper

subsets (k < v) means that r < b in our formulation.

In the paper by Doehlert and Klee [2], K(b) was evaluated for
a number of values of b. In [5], several other values of K(b) for i}
b < 100 were obtained. In this paper, we generalize some of the results *

of [5], and consider the unknown values of K(b) for b < 100.

2. Preliminaries.

If, in a BIBD, b = v, then the design is called a symmetrical
BIBD or an SBIBD. 1In this case, r = k, and the parameters are listed
as (v,k,A). It is well known [6] that in any (r,X)-design b 2 v, with
equality if and only if the design is an SBIBD. The following results can
be found in [5].

THEOREM 2.1.  For all positive integers b = 2

K(b) # b
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OREM 2.2. K(b) = b-1 if and only if there eixists a (b-1,b/2,b/4) -
- !!5IBD.

THEOREM 2.3. The complement of a DK-design is a DK-design.

Theorem 2.4 is proved in [4].

THEOREM 2.4. Let D be a DK(r,\)-design having b blocks and v
.th

varieties. If ki is the cardinality of the i block in D
(r-2) (b=1)-}v _
L S =1,2,...,b

Noting that K(b) =1 if b is the product of distinct primes,

and that K(4a) = 4a - 1 for a £ 25 (this is the Hadamard matrix problem),
it is possible to evaluate K(b) for all values of b < 100 except for
9,18,25,27,45,49,50,54,63,75,81,90,98, and 99. 1In [5], K(b) is evaluated
for b = 9,18,25,27, and 81. This paper determines K(49), gives a general
construction, and improves the upper bounds for the remaining values of

b < 100.

3. Conditions for the Existence of DK-Designs.

From Theorems 2.1 and 2.2, we immediately deduce that K(b) £ b-2
if b # 2r.

4
}“IIHEOREM 3.1. Let t be a positive integer which is square free. Then
K(9t) = 9t-2 <f and only if there exists a (9t-2,3t,t)-SBIBD.

Proof. Since t 1is square free, the only values of r and A satisfying
Aot = r2 are r = 3t, » = t, and the complementary set of parameters.
Suppose k 1is the cardinality of a block B in D. By Theorem 2.4

K < 2e(9t-1)-tv
9t-6t
If v=09t -2+c¢, where 0 <€ < 2, then

2(9e-1)-9t+2-¢ _ _ £
<=3 < 3t 3 -

This implies that k < 3t. Consider any variety x in D. x 1s

contained in 3t blocks Bl' BZ""‘ B3t of D aqd is contained in
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3t .
Z ('(Bi|_1) pairs in these blocks. But the number of pairs that ».J
i=1 1

contain x in D is A(v-1) = t(9t - 2 + ¢ - 1). Thus

3t
(3.1) €9t -2 +e-1) = (B [-1) s 3e(3t-1)
i=1

which implies € £ 0. For € > 0, there are no DK-designs. If ¢ = 0,
then (3.1) implies that every non-empty block in D has size 3t.

Thus D is a (9t-2,3t,t)-SBIBD. This completes the proof.

Suppose we consider K(45). By Theorem 3.1, K(45) = 43 if and
only if there exists a (43,15,5)-SBIBD. Since this design is ruled out by
the Bruck-Ryser-Chowla theorem, K(45) < 42.

COROLLARY 3.1.

(a) K(63) = 61 <if and only if there exists a (61,21,7)-SBIBD.
(b) X(99) = 97 <if and only if there exists a (97,33,11)-SBIBD.

Theorem 2.2 states that K(b) = b-1 if and only if there exists
a Hadamard matrix of order b. We now give a necessary condition for

K(b) to equal b-2.

THEOREM 3.2.  Let k be the cardinality of any block in a DK(r,))-
.
design D having b blocks and b-2 varieties. Let n=r-A and f

a = {r+x(b-3)}. 4 necessary condition for the existence of D is

(1) if b 1is odd, then (nb-a)-k(b-2r) 4is a perfect square;

(2) if b is even, n{(nb-a)-k(b-2r)} s a perfect square.

Proof. Let A be the incidence matrix of D. That is, A = (aij) is

a (b-2)xb matrix of zeros and ones such that

1, if variety i dis in block i,
aij =

0 otherwise.

>

Form a new matrix

=)
= o>
=)
|

e
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is a bxb matrix. Let k be the number of ones in the first column

Mf A and assume that they occur in the first k positions.

Thus, r A . Alr
AT Alr
]
T Alr
* (A =
A% (A%) A . Or
AA...d...t O
11...10.011
rr...r r.r 1 b_

Applying Lemma 3.1 of [1]

det A*(A*)T nb_3[(nb—a)—k(b—2r)]

"

But

* * *
det AYAHT = (der 42

Thus, if b 1s odd, b-3 1is even and the result follows.

THEOREM 3.3. Let D be a DK(r,A)-design having b blocks and b-2
varieties. Then t < 3\ with equality if and only ©f D is a
(9x-2,3\,A)-SBIBD.

roof. let By, B,,...,B be the blocks of D and let k; = |Bi|,

}‘i < i <b. From Theorem 3.2, (nb—a)—ki(b—Zr) or n[(nb—a)—ki(b—Zr)]
(where n =71 - A, a= {r+A(b-3)}) must be a perfect square for each

ki' Let

[nd
]

(nb-a) - ki(b—Zr)

IA
[ N
IA

b.

-(r=3%) = (b-2r) (k;-1), 1

Suppose r 2 3X. This implies b - 2r > 0 and, since ti >0, ki < r.
Let x be any variety in D. The total number of pairs in D containing
x 1is A(b-3). But, in any block containing x, X occurs in at most

r-1 pairs. Thus

(3.2) X(b-3) < r(r-1)
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Since D is a DK-design, Ab = r2; thus (3.2) implies that r < 3X, whick ™
is a contradiction unless r = 3\. This gives equality in (3.2) and thuéﬁl')
every nonempty block of D must have cardinality r. Therefore, D is

a (9x-2,3X,))-SBIBD. The result now follows.

If t dis a divisor of b-2r, then the following result follows

immediately from Theorem 3.2.

THEOREM 3.4. A necessary condition for the existence of a DK(r,\)-
design having b blocks and b-2 varieties is that in the ring of

integers modulo t,

(1) Zif b is odd, 3\-r be a perfect square;

(2) if b is even, n(3XA-r) be a perfect square.

As an application of this theorem, consider K(50). We know that
K(50) < 48. Does there exist a DK(r,A)-design having 50 blocks and

48 varieties such that A50 = r? The possible values of r and A are

b = 50 T

10

20

30 1
40 3

N OO 0N >

Since the parameters come in complementary pairs, we need only consider
(10,2)-designs and (20,8)-designs. By Theorem 3.3, there is no

(10,2)-design having 50 blocks and 48 varieties since r > 3A. Applying J
Theorem 3.4 to the (20,8)-design with n = 12, t = 5 we see that 12.3.8 =
must be a perfect square in the integers modulo 5. But 12.3.8 = 3

mod 5 and 3 is not a square. Hence, there is no DK(20,8)~-design and

therefore K(50) < 47.

4. A Construction for DK-Designs.

In this section, we give a construction for DK-designs having
b-3 varieties and show that in certain cases and possibly infinitely

often these designs are extremal.

., , 2
For this section let a = (2t+1)°, where t is any positive

integer and v = a - 3,
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4 TOREM 4.1. If there exists a Hadamard matrix of order %—+ 1 and

« 1] there exists a (2t(t+l)+l,t2, t(t-l)/Z)— SBIBD, then there exists a
DK(2t2+t,t2)—design having (2c+1)2 blocks and (2t+1)2—3 varieties.

Proof. If there exists a Hadamard matrix of order %'+ 1 (this is
possible and conjectured to be true since %'+ 1 =0 (mod 4)), then there
exists a (% , % , %)-SBIBD. Let the blocks of this design be
Bl’ Bz, Cee Bv/2' We form a new design D* by adjoining a new element
® to the variety set of the SBIBD and the blocks of D* are
Blu{w}, Bzu{m}, cee, Bv/zu{m}, Bl’ B2’ ey Bv/2’ where Bi is the
complement of B_.. D* is a y +1, v, X—, ng,’ v-2 ~-BIBD and it has the
i 2 2 4 4
property that
I(Biu{w}) n Bi| =0,
v+2 .
l(Biu{m})nle— g » L1#3, and
= v+2 . .
|(B1U{ Hon Bj|'— g 1#_]

(D* is called an affine resolvable design.)

2 t(t-1)
2

Now consider the 2e(e+1)+1,t7, -SBIBD, D'. This

v
i = + . . isti
design has 5 2 blocks Let Cl, CZ’ , Cv/2 be any distinct set
of v/2 of the %—+ 2 blocks. Let Vl be the variety set of D* and
be the variety set of D'. Choose Vl and V2 such that Vl n V2 = 9.

““Wrm a new configuration C* on the variety set Vl ] V2 such that

C* contains all blocks of the form

*

Cli = Biu{m} u Ci’ gy
¢t =B C ’
2i = P1 Y Rp

The blocks of C* have the property that

* 2 : <Y
(a) |cji| =2¢"+¢t, 1<3<2, 1<is5;
* * 2 v
= < i £ =
(b) |clinCZi| t5, 1gi<os
15 ncl | =%, 13, 02,151 K <~
(C) ]lnlk_ ’ = I = & = Ly =9

Thus any two blocks of C* have precisely t2 varieties in

common. If we dualize C*, that is, interchange the roles of variety
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2 n
and block in the incidence relation., we obtain a (2t2 + t, t7)-design ?
having a blocks and v varieties. It is easily seen that this .

design is a DK-design and the proof is complete.
COROLLARY 4.1. K(25) 2 22 and K(49) 2 46.

Proof. Since there exists a Hadamard matrix of order 12 and a
(13,4,1)-SBIBD, Theorem 4.1 implies the existence of a DK(10,4)~-design
having 22 varieties and 25 blocks. Thus, K(25) = 22,

Since there exists a Hadamard matrix of order 24 and a (25,9,3)-
SBIBD, there exists a DK(21,9)-design having 46 varieties and 49 blocks.
Therefore, K(49) 2> 46.

K(25) has been shown [5] to be 22. We now prove a result which

allows us to determine K(49).

THEOREM 4.2.  Let p be a prime number congruent to 5 or 7 modulo 12.
Then K(p%) = p°-3.

Proof. Since p2 is not divisible by 4, K(pz) < p2—2. Let D be

a DK(r,X)~design having p2 blocks and p2—2 varieties. Then r=pg,

X = 22 for some &, 1 < ¢ < E%l - By Theorem 3.4, 3\ must be a '
perfect square in the integers modulo P. But A is a perfect square )
and hence 3 must be a perfect square in the integers modulo p. Applyinh-'i

the law of quadratic reciprocity

3-1)(p-1
2 2

(3/p) = (—l)< )(p/3) )

where (3/p) 1is the Legendre symbol. Since P =5 o0r 7 (mod 12), we
have that (3/p) = -1 and hence 3 1is not a perfect square. Therefore,

no DK-designs exist having p2—2 varieties and the result follows.

COROLLARY 4.2. K(25) = 22 and K(49) = 46.

This follows immediately from Corollary 4.1 and Theorem 4.2.
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Summary.

We now summarize the results of the previous sections as they
apply to K(b), b =9, 18, 25, 27, 45, 49, 50, 54, 63, 75, 81, 90, 98,
and 99.

Theorem 3.1 and the existence of certain SBIBD's gives K(9) = 7,
K(18) = 16, K(27) = 25, K(45) < 42, K(54) < 51, K(81) = 79, and K(90) < 87.
Corollary 3.1 provides a partial answer for K(63) and K(99). Corollary
4.2 yields K(25) = 22 and K(49) = 46. We have seen that Theorem 3.4 can
be used to show K(50) < 47. Theorem 3.2 and Theorem 2.4 can be applied
to show that K(75) < 72 and K(98) < 95.
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