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2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4

Dr. N.J.A. Sloane,
Bell Labs, Room 2C-376
Murray Hill,

N.J. 07974. U.S.A.

Dear Neil,

L
_ 5§67

Facuity of SCIENCE
Department of MATHEMATICS & STATISTICS

Telephone (403) 284-5202

82:06:03

Many thanks for refereeing Slater's paper. I'm asking him to L////f
rewrite it with your comments and some of my own in mind.

Do T infer from your change of address notice that you've inherited /

Jessie's room? If you still see her, say hullo from me.

She was an exact

contemporary of mine at Cambridge, so it's no surprise that I'm retiring too.
y ge, P g

I'11 be busy for the next twelve months updating LeVeque's Reviews

in Number Theory to cover the period from 1973.
least one more volume (combinatorics, etc.) in the Croft-Guy series of
Unsolved Problems in Intuitive Mathematics.

I also hope to produce at

Perhaps also a Martin Gardner

type book, How to Win Games and Infiltrate Puzzles for Penguin books in Britain.

Since I wrote the letter to you dated 82:05:20 the following problem
of Klarner has (re?)entered my consciousness from at least two different direc-

tions:

Let S be the smallest set such that

1 €S5S and x € 5 dimplies

20, 3¢ + 2, 6x +3 €5 , thus § = {1,2,4,5,8,9,10,14,15,16,17,18,20,26,27,28,29,
30,32,33,34,36,40,44,47,50,51,52,53,54,56,57,58,60,62,63,64,66,68,72,80,83,86,87,

88,89,92,93,94,98,99,100,101,102,104,105,106,108,110,...} Does S have

positive density?
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Do you remember my writing a paper, the ostensible authors|of which
were Conway, Klarner and Sloane, which was not acceptable to at least]one of the

authors? Do you still have a copy of it?
either (a) be added in to "Don't try to solve...

1"

I've written to K. about it. It could
, or (b) go into some other

miscellany, or (c) be written up by Klarner as part of a larger Problemkreis. Do
you have any comments? The sequence does not appear in the Handbook.
there are some similar ones which might qualify.

I recall

I agree with you about M.0.S. classifications, but they're much better
than nothing. In this case I have to supply the editor with a number so that the
index can be thusly made up for the December issue!



Looking forward to seeing you in Toronto, bearing a presentation
copy of the second edition of the Handbook. Thanks for the offprint of
"Lorentzian forms for the Leech lattice" with John Conway.

Best wishes to all at Bell,
Yours sincerely,

~ I(:,ﬁ GZJU‘J «

RKG: jw Richard K. Guy.
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46,9,0,.—~ a0 i paper /4/@, wike —4) §6 59
3,%,12,1,26,27, 3¢, 39,54,56,5F, 7€ %o, $1,%4, 116, (4,46, UF, (20,158 (62,
S Qé?@ 14,165, (70,171, (74,222, B30, 234,236, 27,242, 243,246, 255, 318, 326,336, 332, 333,

342, 344, S, 50,954,354, 343, 44C, .. (/z/mf wile 3)
5,8, 42, 1%, 2, 26,3%,33,40,42,%, 60,63, é@f@% 75,52, 96,98, 14, 1%

5 ( ( [ U3 424,428, 147 118, (50,154, 162, {77, (%, (%9, 190,194, 222, M5, 226, 231, 234, 254,
l : .
143,244, 246 250, . (Sharlarg wilk —5)
4,10,15, 22,32, 33, 44, 49,66,€5, €9, 94,98, 99, €02, (34, (38 (40, 1#(, 147, (90,
Sy 18, 200, 201, 26, 207,240, 2fo, 27§, 282, 254,285, 296, Y7, 3c0, %09, 382,398,402
i S\Q - 403, 405, 4{41 416, 417,422,427, 924, 44,542, 558, s, s70, 7R, 573,594, 9%,
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DON'T TRY TO SOLVE THESE PROBLEMS!

Richard K. Guy
f'h 5 e
(Gutr |
Such an exhortation will likely .produce the opposite effect, but
I'm serious, and I'll explain why. This afticle has been in mind for some

time, but its eruption is triggered by a proposal from

Schmuel Schreiber, Department of Mathematics and Computer

Science, Bar-Ilan University, Ramat-Gan, Israel.

Ezggisgwg. For an integer a define the set S& inductively by

(1) aes, (2) if k€S, then 2k+2¢€¢S5, (3) if k€S, then 3k+3¢€S3S.

Equivalently, define a function;sa(n) on the integers by

1 1) = 2 2k) = + 2k+1) = k) + 3.

(1) s, (1) =a, (2) s (2k) =25 (k) +2, (3) s, (2k+1)=3s (k)

For a< -3 or a> 2 is s, injective? Or does S&.contain repeated elements?
Some of you are already scribbling, in spite of the warning! More

cautious readers may have been reminded of other problems, perhaps one or

more of the following.

Problem 1. The diophantine equation a?+»2+¢? = 3abe has the singular

solutions (1,1,1) and (2,1,1). Other solutions can be generated from these,

because the equation is quadratic in each variable, for example, b=2, e=1
gives a2 -6a+5=0, a=1 or 5 and (5,2,1) is a solution. Each solution,
apart from the singular ones, is a,géigbggz of just three others, and they
form a binary tree. Is this a genuine tree, or can the same number be

generated by two different routes through it?

i = 2 a =3a +1
EEBR&EEN%' Consider the sequence @ an/ (an even), . Y
(an odd). Tor each positive integer al is there a value of m such that
a =17
n



Eﬁgk}smwg. Consider the mapping
2m -+ 3m, 4m-1->3m-1, 4m+1 > 3m+1.

This generates the cycles (1), (2,3), (4,6,9,7,5) and

(44,66,99,74,111,83,62,93,70,105,79,59). Are there others?

Problem O can be visualized as a binary tree generated by the pair of

unary functions a + 2a+2, a -~ 3a+ 3. TFor example, if a=1, we have Figure 1.
NW\Z/ -
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Figure 1. Binary tree generated by two unary functions.

The number 66 appears twice in Figure 1, by making three steps to
the right, or by making one to the left, one to the'right and two to the
left. A right step multiplies by 3 (roughly); a left step multiplies by 2
(roughly); the coincidence is roughly explained by the approximation:
two right &~ three left; 32x23. 1Is this another example of the strong
law of small numbers [11]? If we try other small values for a, we find

[aYasd

similar coincidences (Figure 2).
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Figure 2. Small values of a lead to coincidences.

Let us look at a=-4. We've omitted the minus signs; alternatively,
change the plus signs to minuses in each of conditions (2) and conditions (3)

in Problem 0. The binary tree is now as in Figure 3.

4.

/\ /9\
1 /%\
18/ Pt 28 42, 50 j—S 46 69
AV ANEA /N /\ /\ /' \
3% 51 52 18 /8 82 123 58 8% 88 132 90 135 136 204
/’\ 7\ \/\/\ N\ /\N//\N/\N/\N N /N7 s NN\ /N

Figure 3. Binary tree generated by a + 2a-2 and a ~ 3a - 3.



The numbers that appear, when arranged in numerical order, are

4,6,9,10,15,16,18,24,27,28,30,34,42,45,46,51,52,54,58,
66,69,78,81,82,87,88,90,99,100,102,106,114,123,130,132,135,

136,150,153,154,159,160,162,171,172,174,178,195,196,198,202,204,210,
Does a number ever occur twice? In the sequence of differences

2,3,1,5,1,2,6,3,1,2,4,8,3,1,5,1,2,4,8,3,9,3,1,5,1,2,9,

1,2,4,8,9,7,2,3,1,14,3,1,5,1,2,9,1,2,4,17,1,2,4,2,6,

there are some intriguing patterns: 3,1,5,1,2 and 1,2,4,8,3 for example.
What of the sequence of "largest gaps so far": 2,3,5,6,8,9,14,17,

The reckless reader will start constructing trees for a=3 and a=-5.

In problem 1 a binary tree is similarly generated by the pair of ternary

functions
(a,b,e) ~ (3ab-c,a,b), (a,b,c) + (3ac-b,a,c)

as in Figure 4.

\
(2,1,1)
A4
(5,2,)
N
(29,5,2) (13,5, 1)

VAN

(465,‘29,5 169299 (194,15,5)  (34,13,1)
/SN N /7N /\

Figure 4. Binary tree of Markoff triples.



We can exhibit more of the tree by s.implifying it as in Figure 5. To recapture
the triples from this, choose any entry for a, and its immediate predecessor
for b. Then ¢ is found when travelling up the tree, just after the first

step after the first rightward step. .E.g. a =985 has predecessor b =169.

When travelling upwards from 985, the first rightward step is from 29 to 5.

The next step is from 5 to 2, so ¢= 2.

135137 5164 907 253
pAES SN /NN g
62210 610
7 \ .
1597
7 N\
4184
7\
10946

Figure 5. Simplified Markoff tree.
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Whether or not there are repetitions in the sequence of Markoff numbers
[a VAV AV AV AV AN AV AV N A A aY AV oV V]

1,2,5,13,29,34,89,169,194,233,433,610,985,1325,1597,2897,

4181,5741,6466,7561,9077,10946,14701,28657,37666,51641, ...

has become a notorious problem. There are occasional claims to have proved
uniqueness, but none seem to hold water [igj. Don Zagier L%%] has some
results on distribution, but none on distinctness, except to show that the
problem is equivalent to the insolvability of a certain system of diophantine
equations. So we are in the realm of Hilbert's tenth problem. Hence the

title of this paper.

Problem 2 is associated with various names: Collatz, Hasse, Kakutani,
Syracuse. ti{ is just as notorious. Lothar Collatz told me that he thought
of it when a student. One of its several waves of popularity started when
he mentioned it to several people at the 1950 International Mathematical
Congress in Cambridge (the wrong Cambridge). Presumably some mathematicians
from Syracuse (the wrong Syracuse) became interested in it; the boys from

Syracuse can perhaps fill in that bit of history.

Is the graph of the Collatz sequence unicyclic? Figure 6 includes all
the numbers up to 26; the branch containing 27 is a much longer one, but

still comes down to 1 after 111 steps.

After a long and inconclusive correspondence some years ago, a claimant
to have a proof eventually admitted that "Erdds says that mathematics is not

yet ripe enough for such questions". Hence the title of this paper.

Problem 3 is one of John Conway's ESEEEE&EERR sequences. It is similar
FAVAVAY AV AV AV AV AV o V)

to the Cdllatz problem, but here the function has an inverse
3n > 2m, 3m-~1->4dn-1, 3m+1 > 4dm+1

(if the number's a multiple of 3, take a third off; otherwise add a third on)

so the sequence can be pursued in either direction. Its graph consists of
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Figure 6. Does the Collatz algorithm give any more cycles?
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a number of disjoint cycles and doubly infinite chains. But it hasn't
even been proved that an infinite chain exists! What is the status of the

sequence containing the number 87
...,41,31,23,17,13,10,15,11,8,12,18,27,20,30,45,34,51,38,57,43,32, ...

What gives a cycle? Each term is either 3/2 times the previous one,
or approximately 3/4 of it. Our best chance of getting back to an earlier
value is to find a power of 3 which is close to a power of 2. The‘known
cycles of lengths 1,2,5 and 12 correspond to the approximations of 31,32,35
and 312 by 22,23,28 and 219, The last is the ratio of D sharp to E flat!

In fact in each of problems 0,2 and 3, the convergents

1 2 3 8 19 65 84 485 1054 24727 50508 ...
2 5

1 1 12 41 53 306 665 15601 31867

to the continued fraction for log 3 to the base 2 are of significance.

Note that there are cycles corresponding to the denominators 1,2,5 and 12,
It has been shown that there are none of length 41,53 or 306. Computers can
push numerical results quite a long way, but it's not clear that they can be

of any use with such problems.

In [5] Conway relates families of sequences similar to that in Problem 3
to the vector reachability problem and Minsky machines. Hence the title of

this paper.
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