login
Number of elementary sequences of length n.
(Formerly M1233)
6

%I M1233 #27 Dec 26 2021 21:14:36

%S 1,1,2,4,10,31,120,578,3422,24504,208833,2086777,24123293,318800755,

%T 4766262421,79874304340,1488227986802

%N Number of elementary sequences of length n.

%C In Fishburn-Roberts (1989) it is stated that no recurrence is known. - _N. J. A. Sloane_, Jan 04 2014

%D Fishburn, Peter C.; Roberts, Fred S., Uniqueness in finite measurement. Applications of combinatorics and graph theory to the biological and social sciences, 103--137, IMA Vol. Math. Appl., 17, Springer, New York, 1989. MR1009374 (90e:92099)

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Fishburn, Peter C.; Roberts, Fred S., <a href="/A005269/a005269.pdf">Uniqueness in finite measurement</a>, in Applications of combinatorics and graph theory to the biological and social sciences, 103--137, IMA Vol. Math. Appl., 17, Springer, New York, 1989. MR1009374 (90e:92099). [Annotated scan of five pages only]

%H Peter C. Fishburn, Fred S. Roberts, <a href="http://dx.doi.org/10.1016/0166-218X(93)90236-H">Elementary sequences, sub-Fibonacci sequences</a>. Discrete Appl. Math. 44 (1993), no. 1-3, 261-281.

%H Sean A. Irvine, <a href="/A005268/a005268.txt">Complete set of sequences for a(11)</a>

%Y Sequences in the Fishburn-Roberts (1989) article: A005269, A005268, A234595, A005272, A003513, A008926.

%K nonn,more

%O 1,3

%A _N. J. A. Sloane_

%E a(11) corrected and a(12)-a(14) from _Sean A. Irvine_, Apr 27 2016

%E a(15)-a(17) from _Bert Dobbelaere_, Dec 28 2020