login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_t t*F(n,t), where F(n,t) (see A033185) is the number of rooted forests with n (unlabeled) nodes and exactly t rooted trees.
(Formerly M2663)
5

%I M2663 #32 Aug 25 2017 16:39:28

%S 1,3,7,17,39,96,232,583,1474,3797,9864,25947,68738,183612,493471,

%T 1334143,3624800,9893860,27113492,74577187,205806860,569678759,

%U 1581243203,4400193551,12273287277,34307646762,96093291818,269654004899,758014312091,2134300171031

%N a(n) = Sum_t t*F(n,t), where F(n,t) (see A033185) is the number of rooted forests with n (unlabeled) nodes and exactly t rooted trees.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Alois P. Heinz, <a href="/A005197/b005197.txt">Table of n, a(n) for n = 1..600</a>

%H E. M. Palmer and A. J. Schwenk, <a href="http://dx.doi.org/10.1016/0095-8956(79)90073-X">On the number of trees in a random forest</a>, J. Combin. Theory, B 27 (1979), 109-121.

%F To get a(n), take row n of the triangle in A033185, multiply successive terms by 1, 2, 3, ... and sum. E.g. a(4) = 1*4+2*3+3*1+4*1 = 17.

%F a(n) ~ c * d^n / n^(3/2), where d = A051491 = 2.955765285..., c = 2.85007275... . - _Vaclav Kotesovec_, Sep 10 2014

%p with(numtheory):

%p t:= proc(n) option remember; local d, j; `if`(n<=1, n,

%p (add(add(d*t(d), d=divisors(j))*t(n-j), j=1..n-1))/(n-1))

%p end:

%p b:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1,

%p `if`(min(i, p)<1, 0, add(b(n-i*j, i-1, p-j) *

%p binomial(t(i)+j-1, j), j=0..min(n/i, p)))))

%p end:

%p a:= a-> add(k*b(n, n, k), k=1..n):

%p seq(a(n), n=1..40); # _Alois P. Heinz_, Aug 20 2012

%t t[1] = 1; t[n_] := t[n] = Module[{d, j}, Sum[Sum[d*t[d], {d, Divisors[j]}]*t[n-j], {j, 1, n-1}]/(n-1)]; b[1, 1, 1] = 1; b[n_, i_, p_] := b[n, i, p] = If[p>n, 0, If[n == 0, 1, If[Min[i, p]<1, 0, Sum[b[n-i*j, i-1, p-j]*Binomial[t[i]+j-1, j], {j, 0, Min[n/i, p]}]]]]; a[n_] := Sum[k*b[n, n, k], {k, 1, n}]; Table[a[n] // FullSimplify, {n, 1, 30}] (* _Jean-François Alcover_, Mar 13 2014, after _Alois P. Heinz_ *)

%Y Cf. A000081, A005196, A033185.

%K nonn

%O 1,2

%A _N. J. A. Sloane_. Definition clarified by _N. J. A. Sloane_, May 29 2012

%E More terms from _Alois P. Heinz_, Aug 20 2012