Scan

Ilan Vardi

Email to NJAS

add to 3 soz
Hi, I wrote a paper on sequence 91 (of Golomb). It will appear shortly in Journal of Number Theory, so I will call them to find out the particulars. I also have some number of queens sequences which I will locate. Could you tell me when you need this material?

In the meantime I would like to give an extra reference to the Conway sequence and the Hofstadter sequence and similar sequences.

-ilan

He considers the recurrences

\[H(1) = H(2) = 1, \]
\[H(n) = H(n - H(n-1)) + H(n - H(n-2)), \quad n > 2 \]
\[C(1) = C(2) = 1 \]
\[C(n) = C(n - C(n-1)) + C(C(n-1)), \quad n > 2 \]
\[K(1) = K(2) = 1, \]
\[K(n) = K(K(n-1)) + K(K(n-2)), \quad n > 2 \]
\[F(1) = F(2) = 1 \]
\[F(n) = F(n - F(n-1)) + F(n - 1 - F(n-2)), \quad n > 2 \]

<table>
<thead>
<tr>
<th>n</th>
<th>H(n)</th>
<th>F(n)</th>
<th>C(n)</th>
<th>K(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>
\begin{verbatim}
9 6 5 5 2
10 6 6 6 2
11 6 6 7 2
12 8 7 7 2
13 8 8 8 2
14 8 8 8 2
15 10 8 8 2
16 9 8 8 2
17 10 9 9 2
18 11 10 10 2
19 11 10 11 2
20 12 11 12 2
\end{verbatim}

H(n) is the Hofstadter sequence, C(n) is the Conway sequence studied by Mallows and K(n) is the sequence K(1) = K(2) = 1, K(n) = 2, n > 2.

F(n) is a sequence apparently defined by Conolly. He makes the interesting observation that F(n) is a more natural formulation of Hofstadter's sequence since the second term on the r.h.s. in Hofstadter's recurrence is not defined the same way as the first term. It turns out that this makes the analysis of F(n) tractable and Conolly proves that if

\[n = 2^m + k, \quad (m > 0, \ 0 \leq k < 2^m) \]

then

\[F(n) = 2^{(m-1)} + F(k+1), \quad n \geq 2. \]

Conolly claims that he also knew most of the relevant properties of Conway's sequence, but that his mail to Guy and Golomb was either mislaid by them or that he did not get a reply.

Conolly's address is: Emeritus Professor of Mathematics (Operational Research), Queen Mary College, University of London.

gauss$