
CONWAY’S COSMOLOGICAL THEOREM

R.A. LITHERLAND

1. Introduction

In [C], Conway introduced an operator on strings (finite sequences) of positive
integers, the audioactive (or “look and say”) operator. Usually, the integers involved
are single digit numbers, and a string consisting of four ones and a single three, for
instance, is written as 11113; in general, the terms of the sequence are referred to as
digits regardless of their size. To apply the operator to the above string, describe it
in words as “four ones, one three” and then translate this to the digit string 4113.
More formally, suppose a string S is written as de1

1 de2

2 · · ·den

n , where de represents
e consecutive digits d. Whenever this is done, it is understood that the grouping is
maximal; that is, di 6= di+1 for 1 ≤ i < n. Then the result of applying the operator
to S is the daughter sequence α(S) = e1d1e2d2 · · · endn. Applying the operator
repeatedly produces the descendants of S, αn(S) for n = 0, 1, . . .. A string that is
equal to αn(S) for some string S and integer n is called an n-day-old string.

Some strings of the form S = LR (with L and R non-empty) have the property
that the descendants of L and R do not interfere with one another, in the sense
that αn(S) = αn(L)αn(R) for all n. In this case, we say that S splits, and write
S = L.R. A string that does not split is called an atom, or element, and every
string splits uniquely into atoms, and is also called a compound. Conway proved
that there is a finite set of common elements that is stable, in the sense that if S is
a common element, all the elements appearing in α(S) are common, and that has
the remarkable property that any sufficiently old descendant of an arbitrary string
(other than ∅ and 22) involves all the common elements. Astoundingly, there are
precisely 92 of these elements, and (less astoundingly) Conway gave them the names
Hydrogen, Helium, . . . , Uranium. He also found two infinite families of elements
that are persistent, in the sense that each such element S appears in αn(S) for some
n > 0 (in fact for n = 2), and so keeps reappearing. These he called the isotopes
of Neptunium and Plutonium, collectively known as the transuranic elements. His
Cosmological Theorem asserts that there is some integer N such that any N -day-old
string splits into common and transuranic elements. One proof of this was found by
Conway and Richard Parker, and another by Mike Guy that showed that one could
take N = 24. Both proofs were lost. Subsequently, Ekhad and Zeilberger [EZ]
gave a proof consisting of a Maple program written by Zeilberger and executed by
Ekhad1, together with a short explanation of what the program does and why its
output constitutes a proof. This, however, only shows that one may take N = 29.

This paper discusses two proofs, both computer assisted, that indeed one may
take N = 24. The C source code for the programs involved and some related
programs, together with documentation, can be found at

Date: April 3, 2003. Last revised: April 14, 2006.
1Zeilberger is a human being and Ekhad is his computer.
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http://www.math.lsu/~lither/jhc/audioactive.tar.gz.

The first proof is a minor adaptation of Ekhad and Zeilberger’s. Almost all the
work is done by the program proof1; the algorithm used, and why its execution
constitutes a proof, are explained in the accompanying documentation, and this
proof will not be discussed further here. The second proof is similar in spirit (I
think) to Conway and Parker’s. That consisted, according to Conway, of “a very
subtle and complicated argument, which (almost) reduced the problem to tracking
a few hundred cases”, which were then “handled on dozens of sheets of paper (now
lost).” The rest of this paper gives a complicated argument reducing the problem
to tracking a finite number of cases. It is clearly not subtle enough, because the
number is 3360. These cases are then checked by the program proof2.

That the number 24 cannot be improved was also shown by Guy, who found
atoms of longevity 24, given on page 186 of [C]. Dropping the first two digits gives
shorter elements of longevity 24, the isotopes of Thuselum, as illustrated in the
documentation for my program evolve.

I assume familiarity with Conway’s paper; in particular, all the named theorems
referred to are found there. Our notation differs in the use of α(S) rather than
S1 for the daughter of S; subscripts on strings are just indices here. As in [C],
a chunk of a string is a substring of consecutive digits. By a run of a string we
mean a maximal chunk of identical digits, and by a block we mean a chunk made
up of runs. A {1, 3}-chunk or {1, 3}-block is one containing only the digits 1 and
3. The longevity of a string S [EZ] is the minimum n for which αn(S) is composed
of common and transuranic elements.

2. Four-day-old strings

Recall that a string is parsed by inserting commas to indicate its derivation from
a parent string. Conway gave restrictions on the strings or parsed strings that
can be chunks of 1- and 2-day-old strings; we give further restrictions for 3- and
4-day-old strings.

Lemma 2.1.

(1) A 1-day-old string has no chunks of the form x,yx, .
(2) A 2-day-old string has no chunks of the form ,xy, with x > 3, or 3x3.
(3) A 3-day old string has no chunks of the form ,33, or 31113.
(4) A 4-day-old string has no chunks of the form 233, 131121 or 133121.

Proof. Parts (1) and (2) are Conway’s One-Day and Two-Day Theorems. In part
(3), the first string must arise from a block 333, contradicting part (2). By part (1),
the second can only be parsed as 3,11,13, , which arises from a chunk 313, again
contrary to (2).

In part (4), the first string is parsed as ,23,3 by (3), and so comes from a chunk
33xxx. One parsing contradicts (1), the other (3). By (1) and (3), the other two
must be parsed as ,13,11,2x, and ,13,31,2x, for some x 6= 1 or 2. These arise from
31xx and 3111xx. By (2), x = 3, and we get a contradiction to (2) or (3). �

We say that a string looks 4 days old if it has a parsing satisfying the conditions
of Lemma 2.1. A chunk of a 4-day-old string need not look 4 days old. However, if
S looks 4 days old, so does any block of S, as well as α(S).
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Lemma 2.2. The only maximal {1, 3}-chunks of a 4-day-old string are

∅, 1, 3, 11, 13, 31, 111, 113, 131, 133, 311,

1113, 1131, 1133, 1311, 1331, 3111, 3113,

11131, 11133, 11311, 11331, 13111, 13113, 13311, 31131, 31133,

111311, 111331, 113111, 113311, 311311, 311331,

1113111, 1113311, 3113111 and 3113311.

Proof. Let S be any {1, 3}-chunk of a 4-day-old string. Suppose length(S) > 2,
and let S′ be the maximal chunk of S that starts and ends with commas in the
parsing of S. Then S′ is non-empty and describes a {1, 3}-block P of a 3-day-old
string that contains no runs of length 2. We claim that P contains at most one 3.
For two consecutive 3s would be a run, and non-consecutive 3s would give a chunk
313 or 31113, both of which are impossible in 3-day-old strings. Hence P is one of
the following eleven strings:

P1 = 1, P2 = 111, P3 = 3, P4 = 13, P5 = 1113, P6 = 31, P7 = 3111,

P8 = 131, P9 = 11131, P10 = 13111 or P11 = 1113111.

Therefore S is equal to α(Pi) for some i, or is obtained from it by prefixing or
appending a single 1 or 3, or both. Only one of 1 or 3 may be prefixed (the one
different from the first digit of Pi), giving a maximum of six possible S for each i.
Also, P4, P5 and P8, . . . , P11 cannot follow a 1 or 3, since it would have to be a 3 and
would give a chunk 313 or 31113. Further, P2 and P7, . . . , P11 cannot be followed by
a run of length three, since the resulting chunk would not parse. Finally, P6 cannot
be both preceded by a 1 and followed by a run of three. This means there are at
most 39 such S, and one checks that all of them, plus the 7 strings of length at
most 2, are listed above apart from 33, 331 and 3311 . The three exceptions cannot
be maximal {1, 3}-chunks, because they cannot appear at the start of a 4-day old
string by part (3) of Lemma 2.1, nor after a 2 by part (4), nor after x > 3 by parts
(2) and (3). �

Lemma 2.3. Let S be an atom appearing in a 4-day-old string. A maximal non-
empty {1, 3}-block of S not at the start of S is one of the following strings:

1, 3, 11, 113, 133, 1131, 1133, 1331, 3111, 11311, 11331, 13311, 113111, or 113311.

Proof. Such a block B appears in a chunk 2B] or 2Bx (x 6= 1, 3) of S, and the
non-empty strings listed in Lemma 2.2 but not here would cause a splitting 2.B]
or 2.Bx. �

Let S1
{1,3} be the set of strings in Lemma 2.2 and S2

{1,3} the set of those in Lemma

2.3. Then any atom appearing in a 4-day-old string can be written in the form

(2.1) M = CAnBn−1An−1 · · ·B1A1,

where:

(2.2) C ∈ S1
{1,3};

(2.3) Bi ∈ S2
{1,3} for 1 ≤ i < n;

(2.4) Ai = 2, 22 or 222 for 1 < i ≤ n; and
(2.5) A1 = ∅, 2, 22, 222 or x for some x > 3.

(Here n = 1 and M = CA1 is allowed.) We shall show that any such atom has
longevity at most 20. It will be more convenient to work with strings satisfying
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(2.6) Ai = 2, 22 or 222 for 1 ≤ i ≤ n

in place of (2.4) and (2.5). We call a string mature if it looks 4 days old and has
the form (2.1) subject to (2.2), (2.3) and (2.6).

Lemma 2.4. If every mature string has longevity at most 20, then so does every
atom appearing in a 4-day-old string.

Proof. Let M be such an atom, written as in (2.1) subject to (2.2)–(2.5). Then M

is mature unless A1 = ∅ or A1 = x > 3. Suppose that A1 = ∅, and that M appears
in α4(S). If M is not the last atom in this string, the next atom is 22. If it is,
α4(S22) ends M22, so in either case M22 is a block of a 4-day old string, and is
therefore mature. Since it splits as M .22, it has the same longevity as M .

Finally, suppose A1 = x with x > 3. Since any occurence of x in a 2-day old
string is neither preceded nor followed by x, in a 3-day-old string it is preceded by
1, and in a 4-day-old string by 11. Hence M ends 11x and it follows from the proof
of the Ending Theorem that the last atom of αk(M) is either Np or Pu for k ≥ 18.
Let M ′ be the string obtained from M by replacing x by 2. Now M does not end
1311x, since the parsings ,13,11,x and 1,31,1x, are both impossible. Hence M ′ is
mature. Now αk(M ′) is obtained from αk(M) by replacing the final x by 2, and
since α20(M ′) is composed of common atoms, all atoms of α20(M) apart from the
last are common. �

The substrings in our decomposition of a mature string do not, of course, evolve
independently. To keep track of their interactions with their neighbors, we regard
each one as a state of a machine, as explained in the next section.

3. Machines and pipelines

For our purposes, a machine M consists of a set S of states, an input alphabet
I, an output alphabet O (all non-empty), and a program π : S × I → O × S. The
output function ω : S× I → O and the transition function τ : S× I → S are defined
by composing π with the appropriate projections. If s is a string on I and S ∈ S,

we write S
s
−→
t

T to indicate that M, receiving input s in state S, outputs the string

t and ends in state T . (When s is a single letter, so is t, and this means that
π(S, s) = (t, T ). The machine in question will be clear from the context.) In the
machines we actually use, the output ω(S, x) is independent of x, so we sometimes

write S
s
−→
t

to mean that M, receiving input s in state S, outputs t (one letter longer

than s), and ends in an unknown state. We also use the notation S
s
−→
t

for infinite

sequences s and t on I and O, which we call input and output streams. Finally,
parts of s that do not affect the outcome will be suppressed.

Given machines M1 = (S1, I1, O1, π1) and M2 = (S2, I2, O2, π2) with O1 = I2, we
can form the machine M = M2M1, called a pipeline, by connecting the output of
M1 to the input of M2. We have M = (S, I, O, π), where S = S2 × S1, I = I1, and
O = O2. The program for M should be intuitively clear; formally we have

π(S2, S1, x) = (π2(S2, ω1(S1, x)), τ1(S1, x)).

Clearly, we have a category whose arrows are machines; the order in which we write
a pipeline corresponds to the “functions on the left” convention, and is also the
natural one for our application of the idea. We now define three specific machines.
The states, inputs, and outputs will all be digit strings. In fact, the inputs and
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outputs will be either the empty string ∅ or a single digit, so we can write the
IO-streams without commas. By a simple string we mean a string on {1, 2, 3} in
which all runs have length at most 3.

The machine A. Here S = {2, 22, 222}, I = {∅, 2} and O = {∅, 1, 3}. The program
is given by

State 1 Input Output State 2

2y, y 6= 2 x y 2x

22 x ∅ 22x

The machine B. Here S is the set of all non-empty simple strings that neither
start nor end with a 2, I = {∅, 1, 3} and O = {∅, 2}. For S ∈ S, either α(S) ∈ S or
α(S) = 2T with T ∈ S. The program is given by

State 1 Input Output State 2

S, α(S) ∈ S x ∅ α(S)x
S, α(S) = 2T x 2 Tx

The machine C. Here S is the set of all (possibly empty) simple strings that do
not end with a 2, I = {∅, 1, 3} and O = {∅}. The program is given by

State 1 Input State 2

S x α(S)x

Consider the machine M = CAnBn−1An−1 · · ·B1A1 for some n, where each Ai

or Bi is a copy of A or B. If M = CAnBn−1An−1 · · ·B1A1 is a mature string, then
M has (C, An, Bn−1, An−1, . . . , B1, A1) as a state, and if it is started from this state
with input stream ∅∞, the product of the strings in the state after k inputs have
been consumed will be αk(M). We say that M is run properly if the initial state
corresponds to a mature string and the input is ∅∞. We consider these machines
in the next section.

Now suppose M = Mn · · ·M1 for some n ≥ 2, where each Mi is a copy of A, B

or C. Let M = (S, I, O, π). (I is one of {∅, 2} and {∅, 1, 3}, and O is one of {∅},

{∅, 2} and {∅, 1, 3}). We define a machine M̂ = (Ŝ, I, O, π̂) with the same inputs

and outputs as M as follows. Ŝ is the set of all non-empty simple strings whose

first digit is not in O and whose last digit is in I. For S ∈ Ŝ, either α(S) ∈ Ŝ or

α(S) = yT with y ∈ O and T ∈ Ŝ. The program is given by

State 1 Input Output State 2

S, α(S) ∈ Ŝ x ∅ α(S)x
S, α(S) = yT , y ∈ O x y Tx

Every state (Sn, . . . , S1) of M determines a state Sn · · ·S1 of M̂. If M and M̂ are
started from corresponding states and given the same input, they will produce

the same output, and at each stage their states will correspond. We call M̂ the
flattening of M.

We now prove two lemmas about the machines A and B. In following the evolu-
tion of these machines from specific states, we will always know an initial chunk of
the state, and usually the whole state, so we do not use Conway’s [ and ] notation.
Our convention is that, for instance, 121 denotes a complete state, while 121〉 de-
notes a state starting 121. We continue the convention that explicit exponents are

5



maximal, so that if a state is written 11x1〉, it is implied that x 6= 1 and the state
does not start 1xx.

Lemma 3.1. The output of A (for any initial state and input) does not contain
∅1, 13 or 33.

Proof. The possibilities for two consecutive steps are:

2
∅
−→
1

2 −→
1

; 22
∅
−→
∅

22 −→
∅

; 222
∅
−→
3

2 −→
1

;

2
2
−→
1

22 −→
∅

; 22
2
−→
∅

222 −→
3

; 222
2
−→
3

22 −→
∅

. �

Lemma 3.2. Let L = ∅ or 112, and let R be a string of the form 11x1〉, 13〉 or
31x1 or 2〉. Set ω̄(∅) = ∅ and ω̄(112) = 2. Suppose that at some stage B has state
LR. Then the subsequent output is ω̄(L)∞, and at all later stages B has state LR′,
where R′ has one of the same three forms as R.

Proof. Clearly the first output is ω̄(L) and the next state is LR′ where R′ = α(R),
α(R)1 or α(R)3. If R = 11x1〉, then α(R) = 13〉, and R′ has the same form. If
R = 13〉, then α(R) = 311 or 2〉, and R′ could have a different form only if α(R)
were equal to 311, which is impossible. Finally, if R = 31x1 or 2〉 then both α(R)
and R′ have the form 13(1 or 2)〉. The result follows. �

When a state S satisfying the hypotheses of this lemma arises, we indicate this
by writing S as L.R.

4. Properly-run machines

Throughout this section, M = CAnBn−1An−1 · · ·B1A1 and we assume that M

has an initial state corresponding to a mature string and input ∅∞. For 1 ≤ i ≤ n,
we let si be the input stream of Ai, and ti its output stream. Then si is a stream
on {∅, 2}, ti is a stream on {∅, 1, 3}, and s1 = ∅∞.

Lemma 4.1.

(1) If ∅2 appears in si, it is followed by 22, ∅2, or ∅∞.
(2) If ∅∅2 appears in si, it is followed by 222.
(3) If ∅3 appears in si, it is followed by ∅∞.

Proof. If i = 1, this is trivially true, so suppose i > 1. Then si is also the output of
the flattening Ni of Bi−1Ai−1 · · ·B1A1 with input ∅∞. The state transitions below
are for the machine Ni.

(1) From the proof of the Starting Theorem, the state S of Ni just before ∅2 appears
must be 132〉, 123〉 or 122〉. (It cannot be just 1.) Suppose first S = 132〉. Because
S looks 4 days old, it must have the form 132x1 or 2〉. Hence we have

132〉 −→
∅

1123(1 or 2)〉 −→
2

11213〉 −→
2

11211〉 −→
2

112〉 −→
2

1〉,

so in this case ∅2 is followed by 222. Now suppose S = 123〉. Then we have

123〉 −→
∅

11321 or 2〉 −→
2

113(1 or 2)〉 −→
2

113〉 −→
2

1〉,

so in this case ∅2 is followed by 22. Finally, suppose that S = 122〉. One possibility
is

122〉 −→
∅

1123〉 −→
2

132〉,
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and in this case ∅2 is followed by ∅∞, by the Starting Theorem. Otherwise we have

122〉 −→
∅

1122〉 −→
2

122〉 −→
∅

11(6=1)〉 −→
2

1〉

and in this case ∅2 is followed by ∅2.

(2) From the proof of the Starting Theorem, the state of Ni just before ∅∅2 appears
must be 31x3〉, and the next step is 31x3〉 −→

∅
132〉. That this is followed by the

output ∅24 is part of the proof of part (1).

(3) From the proof of the Starting Theorem, the state of Ni just before ∅3 appears
must be 11x1〉, 13〉 or 31x6=3〉, and the result follows. �

Lemma 4.2.

(1) If ∅∅3 appears in ti, it is followed by ∅3, 1∅, or 1∞.
(2) If ∅∅∅3 appears in ti, it is followed by ∅3∅.
(3) If ∅4 appears in ti, it is followed by ∅∞.
(4) If 11∅ appears in ti, it is followed by 3∅, ∅3, or ∅∞.
(5) If 111∅ appears in ti, it is followed by 3∅3.
(6) If 14 appears in ti, it is followed by 1∞.

Proof. In cases (1)–(3) (resp. (4)–(6)), the state of Ai just before the given sequence
appears in its output stream must be 22 (resp. 2), and the part of the input stream
si about to be read must start ∅2, ∅∅2 or ∅3. In each case the possibilities for the
continuation of si are given by the previous lemma, and we just need to compute
the corresponding outputs. The following computations show the output starting
with the given sequence.

22
∅
−→
∅

22
2
−→
∅

222
2
−→
3

22
2
−→
∅

222 −→
3

;(1)

22
∅
−→
∅

22
2
−→
∅

222
∅
−→
3

2
2
−→
1

22 −→
∅

;

22
∅
−→
∅

22
2
−→
∅

222
∅
−→
3

2
∅∞

−−→
1∞

.

(2) 22
∅
−→
∅

22
∅
−→
∅

22
2
−→
∅

222
2
−→
3

22
2
−→
∅

222
2
−→
3

22 −→
∅

.

2
∅
−→
1

2
2
−→
1

22
2
−→
∅

222
2
−→
3

22 −→
∅

;(4)

2
∅
−→
1

2
2
−→
1

22
∅
−→
∅

22
2
−→
∅

222 −→
3

;

2
∅
−→
1

2
2
−→
1

22
∅∞

−−→
∅∞

.

(5) 2
∅
−→
1

2
∅
−→
1

2
2
−→
1

22
2
−→
∅

222
2
−→
3

22
2
−→
∅

222 −→
3

.

�(3,6) 22
∅∞

−−→
∅∞

; 2
∅∞

−−→
1∞

.
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Recall that the initial state of Ai (resp. Bi) is the string Ai (resp. Bi) from the
decomposition (2.1) of our mature string M .

Lemma 4.3. If Bi is 133, 1131 or 3111, then ti does not start with 3. If Bi is
1331 or 11311, ti does not start with 1.

Proof. We need to show that in the first three cases, Ai is not 222, and in the others
it is not 2. This is so because M looks 4 days old. �

In Lemmas 4.4–4.10, we determine the possible output streams si+1 of Bi for
the allowable initial states Bi ∈ S2

{1,3}. In each case, the proof consists of listing

the evolutions of the state for all possible inputs until it becomes periodic. That
we have considered all possible inputs ti to Bi can be seen from Lemmas 4.3, 3.1
and 4.2. In most cases, that the output becomes periodic follows from Lemma 3.2,
or from a case already dealt with. We shall therefore not give these justifications
explicitly.

Lemma 4.4. If Bi is one of the eight strings in the left column below, the output
stream si+1 of Bi is as indicated.

Bi si+1

1133, 11331, 113311 2∅∞

1331, 13311 ∅2∞

3111 ∅22∞

11311 25∅∞

113111 22∅∞

Proof. We have

1132〉 −→
2

.123〉 −−→
∅∞

;

1331
∅ or 3
−−−−→

∅
112.312〉 −−→

2∞

;

13311 −→
∅

112.321〉 −−→
2∞

;

3111
∅ or 1
−−−−→

∅
13311 or 2 −−−→

∅2∞

;

11311
∅ or 3
−−−−→

2
113211〉 −→

2
113121〉 −→

2
1131112〉 −→

2
11331〉 −→

2
.123〉 −−→

∅∞

;

113111 −→
2

1132〉 −−−→
2∅∞

. �

Let s be a stream on {∅, 2} and t a finite or infinite sequence on {∅, 1, 3}. In
Lemmas 4.5–4.10, the notation t  s means that, for the given value of Bi, if ti
starts with t, then si+1 = s.

Lemma 4.5. If Bi = 1131, we have ∅ 26∅∞ and 1 23∅∞.

Proof. We have

1131
∅
−→
2

11311 −−−→
25∅∞

and 1131
1
−→
2

113111 −−−→
22∅∞

. �

Lemma 4.6. If Bi = 133, we have 1 or ∅∅ ∅2∞, and ∅3 ∅24∅23∅∞.
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Proof. The first two cases are given by

133
1
−→
∅

112.31 −−→
2∞

and 133
∅
−→
∅

1123
∅
−→
2

112.13 −−→
2∞

,

and the third by

133
∅
−→
∅

1123
3
−→
2

112133
∅ or 1
−−−−→

2
11211231〉 −→

2
112211213〉

−→
2

122211211〉 −→
∅

11322112〉 −→
2

1132221〉 −→
2

11332〉 −→
2

.123〉 −−→
∅∞

. �

Lemma 4.7. If Bi = 3, we have ∅ or 1  ∅∞; 31 or 3∅∅  ∅22∞; and 3∅3  
∅224∅23∅∞.

Proof. We have

3
∅
−→
∅

.13 −−→
∅∞

; 3
1
−→
∅

.131 −−→
∅∞

;

3
3
−→
∅

133
1

−−−→
∅2∞

; 3
3
−→
∅

133
∅∅

−−−→
∅2∞

;

3
3
−→
∅

133
∅3

−−−−−−→
∅24∅23∅∞

. �

Lemma 4.8. If Bi = 113, we have 1∅  27∅∞, 11  24∅∞, ∅a3  2a+2∅∞ for
0 ≤ a ≤ 3, and ∅∞  2∞.

Proof. First,

113
1
−→
2

1131
∅

−−−→
26∅∞

and 113
1
−→
2

1131
1

−−−→
23∅∞

.

Second, noting that 113
∅
−→
2

113,

113
∅a

−→
2a

113
3
−→
2

1133 −−−→
2∅∞

and 113
∅∞

−−→
2∞

. �

Lemma 4.9. If Bi = 1, we have

1 ∅∞,

31∅ ∅27∅∞, 311 ∅24∅∞, 3∅∞  ∅2∞,

3∅a3 ∅2a+2∅∞ for 1 ≤ a ≤ 3,

∅3 ∅2∅∞,

∅231∅ ∅2∅27∅∞, ∅2311 ∅2∅24∅∞, ∅23∅3 ∅2∅23∅∞,

∅33 ∅2∅2∅∞, and ∅∞  (∅2)∞.

Proof. The first case comes from 1
1
−→
∅

.111 −−→
∅∞

. Otherwise, the evolution starts

along some path in the following diagram. (On the vertical arrows, inputs are on
the left and outputs on the right.)

1
∅

−−−−→
∅

11
∅

−−−−→
2

1
∅

−−−−→
∅

11
∅∞

−−−−→
(2∅)∞

3

y∅ 3

y2 3

y∅ 3

y2

113 .13 113 .13
y∅∞

y∅∞
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Considering the possible continuations from the occurences of the state 113 com-
pletes the proof. �

Lemma 4.10. If Bi = 11, we have

3 2∅∞, 1∞  2∞ and 1a∅∞  2a+1(∅2)∞ for 0 ≤ a ≤ 2;

1a∅31∅ 2a+1∅27∅∞ and 1a∅311 2a+1∅24∅∞ for a = 0 or 1;

1a∅3∅b3 2a+1∅2b+2∅∞ for 0 ≤ a ≤ 2 and 1 ≤ b ≤ 3;

13∅3∅3 24∅23∅∞ and 1a∅3∅∞  2a+1∅2∞ for 0 ≤ a ≤ 2;

1a∅23 2a+1∅2∅∞ for 0 ≤ a ≤ 2;

and 1a∅33 2a+1∅2∅23∅∞ for a = 0 or 1;

Proof. The first case is given by 11
3
−→
2

.13 −−→
∅∞

. Noting that 11
1
−→
2

11, the second is

clear, and all the rest come from an evolution starting 11
1a

−→
2a

11
∅
−→
2

1 for 0 ≤ a ≤

3. �

Lemma 4.11. For 1 ≤ i < n and any Bi ∈ S2
{1,3}, si+1 is one of the following

streams.

2a(∅2)∞ for 0 ≤ a ≤ 3;

∅a2∞ for 0 ≤ a ≤ 2;

2a∅2∞ for 1 ≤ a ≤ 3;

2a∅∞ for 0 ≤ a ≤ 7;

2a∅2b∅∞ for 0 ≤ a ≤ 2 and b = 1, 3, 4, 5 or 7;

23∅2a∅∞ for a = 1, 3, 4 or 5;

∅2∅2a∅∞ for a = 1, 3, 4 or 7;

∅a24∅23∅∞ for 0 ≤ a ≤ 2;

2a∅2∅23∅∞ for a = 1 or 2.

Proof. This is just a matter of checking that all the values of si+1 from Lemmas
4.4–4.10 appear in the above list. �

In fact, not all the above streams can occur.

Lemma 4.12. For 1 ≤ i < n and any Bi ∈ S2
{1,3}, si+1 is not equal to 2a∅25∅∞

for 0 ≤ a ≤ 3, 23∅24∅∞, or 22∅2∅23∅∞.

Proof. From Lemmas 4.4–4.10, these streams could only arise as si+1 if Bi and an
initial portion t of ti were as follows.

si+1 Bi t

∅25∅∞ 1 3∅33
2a∅25∅∞, 1 ≤ a ≤ 3 11 1a−1∅3∅33
23∅24∅∞ 11 12∅3∅23
22∅2∅23∅∞ 11 1∅33

10



In all but one case, ti contains 3∅33 or 1∅33, which implies that si contains 2∅22;
but this is impossible by the previous lemma. In the remaining case, t = 12∅3∅23,
which implies that si starts with ∅23∅2, which is also impossible. �

We let S{∅,2} be the set of streams appearing in Lemma 4.11 but not in Lemma
4.12.

Theorem 1. Every mature string has longevity at most 20.

From Lemma 2.4, this implies Guy’s version of the Cosmological Theorem.

Corollary 1. Every digit string has longevity at most 24.

Proof of Theorem 1. Let the state of M after k inputs (all ∅) have been consumed

be
(
C(k), A

(k)
n , B

(k)
n−1, A

(k)
n−1, . . . , B

(k)
1 , A

(k)
1

)
, so that

αk(M) = C(k)A(k)
n B

(k)
n−1A

(k)
n−1 · · ·B

(k)
1 A

(k)
1 .

Let Ni be the flattening of BiAi for 1 ≤ i < n, and of CAn for i = n. Give Nn · · ·N1

the initial state corresonding to M and input ∅∞, and let its state after k inputs be(
N

(k)
n , . . . , N

(k)
1

)
, so that also αk(M) = N

(k)
n · · ·N

(k)
1 . Ni has input si for 1 ≤ i ≤ n

and output si+1 for 1 ≤ i < n. Let 1 ≤ i < n. Since si+1 ∈ S{∅,2}, si+1 = uiv
∞
i ,

where length(ui) = 10 and vi = ∅, ∅2, 2∅ or 2. If vi = ∅, α10(M) splits as

N (10)
n · · ·N

(10)
i+1 .N

(10)
i · · ·N

(10)
1 .

Streams ending in (∅2)∞ only arise in Lemmas 4.9 and 4.10, and it follows that if

vi = ∅2 or 2∅ then B
(10)
i = 1 or 11 and ti contains only ∅ after its first 10 terms.

This implies that A
(10)
i = 22 and si contains only ∅ after its first 10 terms, and it

follows that α10(M) splits as

N (10)
n · · ·N

(10)
i+1 (1 or 11).22.N

(10)
i−1 · · ·N

(10)
1 .

Now suppose that vi = 2. Examining the proofs of Lemmas 4.4–4.10, we see that

this can arise in three ways. First, we may have B
(10)
i = 112R with R as in Lemma

3.2. In this case, α10(M) splits as

N (10)
n · · ·N

(10)
i+1 112.RA

(10)
i N

(10)
i−1 · · ·N

(10)
1 .

Second, we may have B
(10)
i = 113 and ti containing only ∅ after its first 10 terms.

This implies that A
(10)
i = 22 and si contains only ∅ after its first 10 terms, and it

follows that α10(M) splits as

N (10)
n · · ·N

(10)
i+1 113.22.N

(10)
i−1 · · ·N

(10)
1 .

Finally, we may have Bi = 11 and ti = 1∞. This implies that Ai = 2 and si = ∅∞,
and it follows that α10(M) splits as

N (10)
n · · ·N

(10)
i+1 112.N

(10)
i−1 · · ·N

(10)
1 .

In all cases, we may write N
(10)
i = LiRi, where Li = ∅, 1 or 11 if vi = ∅, ∅2 or

2∅, respectively, and Li = 112 or 113 if vi = 2, and α10(M) splits as

N (10)
n · · ·N

(10)
i+1 Li.RiN

(10)
i−1 · · ·N

(10)
1 .
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Setting L0 = ∅, we have the splitting

N (10)
n Ln−1.Rn−1Ln−2. · · · .R1L0

of α10(M), so it suffices to show that all the factors in this splitting have longevity
at most 10. There are only finitely many possibilities for these factors and they
may be obtained as follows. For j = 1 or 2, let Xj be the set of triples (S, s, L),

where S = (S1, S2) ∈ S
j

{1,3} × {2, 22, 222}, S1S2 looks 4 days old, s ∈ S{∅,2}, and,

writing s = uv∞ with length(u) = 10, L = ∅, 1 or 11 if v = ∅, ∅2 or 2∅, respectively,
and L = 112 or 113 if v = 2. Let Y ⊂ X1 consist of those triples with L 6= 112.
For (S, s, L) ∈ X1, let N(S, s) be the state of CA, starting from S, after the first

10 inputs have been taken from s. Then N
(10)
n Ln−1 = N(S, s)L for some (S, s, L).

Similarly,for (S, s, L) ∈ X2, let S′ be the state of BA, starting from S, after the first
10 inputs have been taken from s. If the first atom of S′ is 1, 11, 112 or 113, let
R(S, s) be the remainder of S′, and otherwise let R(S, s) = S′. Then, for 1 ≤ i < n,
RiLi−1 = R(S, s)L for some (S, s, L). For (S, s, L) ∈ X2, N(S, s) and R(S, s) are
both defined, and N(S, s)L = T .R(S, s)L for some string T , so it is enough to show
that N(S, s)L has longevity at most 10 for all (S, s, L) ∈ X1. If s ends in 2∞, the
longevity of N(S, s)112 is at most that of N(S, s)113, since for any common atom
ending 13, replacing the final 3 by 2 gives a common atom. Hence we need only
consider (S, s, L) ∈ Y. Unfortunately, there are still many cases. Of the 37 strings
in S1

{1,3}, 19 cannot be followed by 23 in a string that looks 4 days old, and 8 others

not by 21, so there are 84 choices for S. Since there are 40 streams in S{∅,2}, we
have |Y| = 84× 40 = 3360. The corresponding strings N(S, s)L are computed, and
their longevities checked, by the program proof2 referred to earlier, completing the
proof. �

References

[C] J.H. Conway, The weird and wonderful chemistry of audioactive decay, in: “Open Problems

in Communication and Computation”, T.M. Cover and B. Gopinath, eds., Springer, 1987,
pp. 173–188.

[EZ] Shalosh B. Ekhad and Doron Zeilberger, Proof of Conway’s Lost Cosmological Theorem,
Electron. Res. Announc. Amer. Math. Soc. 3 (1997), 78–82; available at
http://www.math.temple.edu/~zeilberg/mamarim/mamarimhtml/horton.html.

Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803

E-mail address: lither@math.lsu.edu

12


