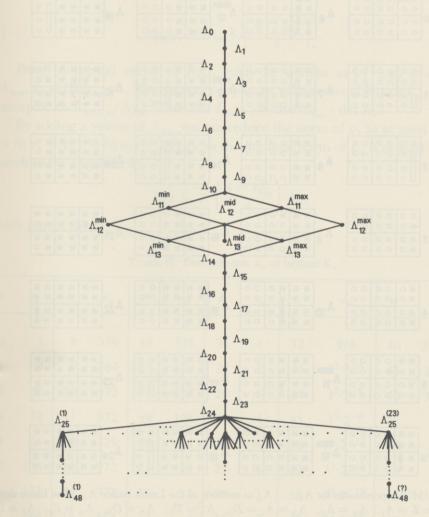
E_n

 $n \le 24$ there is only one Λ_n , $\Lambda_{13}^{\rm mid}$, that is not contained in a Λ_{n+1} . The proof of Theorem 1 depends heavily on the next two theorems, the first of which collects known results.

Theorem 2. For $n=0,1,\ldots,8$ the densest lattice packing in \mathbf{R}^n is isomorphic to $A_0,\,A_1\cong\mathbf{Z},\,A_2,\,A_3\cong D_3,\,D_4,\,D_5,\,E_6,\,E_7,\,E_8$ respectively. The laminated lattices $\Lambda_0,\,\Lambda_1,\ldots,\Lambda_8$ are unique and are isomorphic to these lattices. Their determinants and covering radii are shown in Table I.

Proof. For the first assertion see [6], [35], [36]; for the second see [24], [26]; and for the covering radii see for instance [15], [17].



rs to be that for

FIGURE 3. Graph showing inclusions among the laminated lattices Λ_n . All Λ_n for $n \le 24$ are shown, while there are 23 Λ_{25} 's and a large number of Λ_{26} 's. At least one Λ_n is known for $27 \le n \le 48$.

For east ce is

iven ₋₁ is Then

The in all d the

or the qual if gh we

ave the

 ≤ 48 is adius h_n

also the re 3. At

to he