Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Dec 03 2020 07:35:30
%S 0,1,2,3,4,5,6,7,8,9,10,11,2048,2049,2050,2051,2052,2053,2054,2055,
%T 2056,2057,2058,4096,4097,4098,4099,4100,4101,4102,4103,4104,4105,
%U 6144,6145,6146,6147,6148,6149,6150,6151,6152,8192,8193,8194,8195,8196,8197,8198
%N Numbers that are the sum of at most 11 positive 11th powers.
%H Alois P. Heinz, <a href="/A004917/b004917.txt">Table of n, a(n) for n = 1..10000</a>
%p b:= proc(n, i, t) option remember; n=0 or i>0 and t>0
%p and (b(n, i-1, t) or i^11<=n and b(n-i^11, i, t-1))
%p end:
%p a:= proc(n) option remember; local k;
%p for k from 1+ `if`(n=1, -1, a(n-1))
%p while not b(k, iroot(k, 11), 11) do od; k
%p end:
%p seq(a(n), n=1..60); # _Alois P. Heinz_, Sep 16 2016
%t b[n_, i_, t_] := b[n, i, t] = n == 0 || i > 0 && t > 0 && (b[n, i - 1, t] || i^11 <= n && b[n - i^11, i, t - 1]);
%t a[n_] := a[n] = Module[{k}, For[k = 1 + If[n == 1, -1, a[n - 1]], !b[k, k^(1/11) // Floor, 11], k++]; k];
%t Array[a, 60] (* _Jean-François Alcover_, Dec 03 2020, after _Alois P. Heinz_ *)
%Y Cf. A008455 (11th powers).
%Y Column k=11 of A336820.
%K nonn
%O 1,3
%A _N. J. A. Sloane_
%E More terms from _Alois P. Heinz_, Sep 16 2016