login
Numbers whose binary expansion ends in 011.
2

%I #24 Aug 09 2023 14:09:25

%S 11,19,27,35,43,51,59,67,75,83,91,99,107,115,123,131,139,147,155,163,

%T 171,179,187,195,203,211,219,227,235,243,251,259,267,275,283,291,299,

%U 307,315,323,331,339,347,355,363,371,379,387,395,403,411,419,427,435,443,451,459,467,475,483,491

%N Numbers whose binary expansion ends in 011.

%H Vincenzo Librandi, <a href="/A004769/b004769.txt">Table of n, a(n) for n = 0..10000</a>

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).

%F a(n) = 8*n + 11. - _Vincenzo Librandi_, Jul 12 2011

%F From _G. C. Greubel_, Oct 13 2018: (Start)

%F a(n) = 2*a(n-1) - a(n-2).

%F G.f.: (11 - 3*x)/(1-x)^2.

%F E.g.f.: (8*x + 11)*exp(x). (End)

%t Table[8*n+11, {n,0,60}] (* _G. C. Greubel_, Oct 13 2018 *)

%t LinearRecurrence[{2,-1},{11,19},80] (* _Harvey P. Dale_, Aug 09 2023 *)

%o (Magma) [8*n+11: n in [0..60]]; // _Vincenzo Librandi_, Jul 12 2011

%o (PARI) a(n)=8*n+11 \\ _Charles R Greathouse IV_, Jul 11 2016

%Y Essentially same as A017101.

%K nonn,easy,base

%O 0,1

%A _N. J. A. Sloane_