login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A004213 Shifts one place left under 4th-order binomial transform.
(Formerly M3956)
23

%I M3956 #74 Aug 20 2022 12:30:19

%S 1,1,5,29,201,1657,15821,170389,2032785,26546673,376085653,5736591885,

%T 93614616409,1625661357673,29905322979421,580513190237573,

%U 11850869542405409,253669139947767777,5678266212792053029,132607996474971041789,3224106929536557918697

%N Shifts one place left under 4th-order binomial transform.

%C Length-n restricted growth strings (RGS) [s(0),s(1),...,s(n-1)] where s(k)<=F(k)+4 where F(0)=0 and F(k+1)=s(k+1) if s(k+1)-s(k)=4, otherwise F(k+1)=F(k); see example and Fxtbook link. - _Joerg Arndt_, Apr 30 2011

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Vincenzo Librandi, <a href="/A004213/b004213.txt">Table of n, a(n) for n = 0..66</a>

%H Joerg Arndt, <a href="http://www.jjj.de/fxt/#fxtbook">Matters Computational (The Fxtbook)</a>, section 17.3.5, pp. 366-368

%H M. Bernstein and N. J. A. Sloane, <a href="https://arxiv.org/abs/math/0205301">Some canonical sequences of integers</a>, arXiv:math/0205301 [math.CO], 2002; Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]

%H M. Bernstein and N. J. A. Sloane, <a href="/A003633/a003633_1.pdf">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]

%H Adalbert Kerber, <a href="http://dx.doi.org/10.1016/0012-365X(78)90163-2">A matrix of combinatorial numbers related to the symmetric groups</a>, Discrete Math., 21 (1978), 319-321.

%H A. Kerber, <a href="/A004211/a004211.pdf">A matrix of combinatorial numbers related to the symmetric groups<</a>, Discrete Math., 21 (1978), 319-321. [Annotated scanned copy]

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%F a(n) = Sum_{m=0..n} 4^(n-m)*Stirling2(n, m).

%F E.g.f.: exp((exp(4*x)-1)/4).

%F O.g.f. A(x) satisfies A'(x)/A(x) = e^(4x).

%F E.g.f.: exp(int(t=0..x, exp(4*t))). - _Joerg Arndt_, Apr 30 2011

%F O.g.f.: Sum_{k>=0} x^k/Product_{j=1..k} (1-4*j*x). - _Joerg Arndt_, Apr 30 2011

%F Define f_1(x), f_2(x), ... such that f_1(x)=e^x, f_{n+1}(x) = (d/dx)(x*f_n(x)), for n=2,3,.... Then a(n) = e^(-1/4)*4^{n-1}*f_n(1/4). - _Milan Janjic_, May 30 2008

%F a(n) = upper left term in M^n, M = an infinite square production matrix in which a diagonal of (4,4,4,...) is appended to the right of Pascal's triangle:

%F 1, 4, 0, 0, 0, ...

%F 1, 1, 4, 0, 0, ...

%F 1, 2, 1, 4, 0, ...

%F 1, 3, 3, 1, 4, ...

%F ... - _Gary W. Adamson_, Jul 29 2011

%F G.f. satisfies A(x)=1+x/(1-4*x)*A(x/(1-4*x)). a(n)=sum(4^(n-k)*binomial(n-1,k-1)*a(k-1),k,1,n), n>0, a(0)=1. - _Vladimir Kruchinin_, Nov 28 2011 [corrected by _Ilya Gutkovskiy_, May 02 2019]

%F G.f.: (G(0) - 1)/(x-1) where G(k) = 1 - 1/(1-4*k*x)/(1-x/(x-1/G(k+1) )); (recursively defined continued fraction). - _Sergei N. Gladkovskii_, Jan 24 2013

%F G.f.: (G(0) - 1)/(1+x) where G(k) = 1 + 1/(1-4*k*x)/(1-x/(x+1/G(k+1) )); (recursively defined continued fraction). - _Sergei N. Gladkovskii_, Jan 31 2013

%F G.f.: T(0)/(1-x), where T(k) = 1 - 4*x^2*(k+1)/( 4*x^2*(k+1) - (1-x-4*x*k)*(1-5*x-4*x*k)/T(k+1) ); (continued fraction). - _Sergei N. Gladkovskii_, Oct 19 2013

%F a(n) = exp(-1/4) * Sum_{k>=0} 4^(n-k) * k^n / k!. - _Vaclav Kotesovec_, Jul 15 2021

%F a(n) ~ 4^n * n^n * exp(n/LambertW(4*n) - 1/4 - n) / (sqrt(1 + LambertW(4*n)) * LambertW(4*n)^n). - _Vaclav Kotesovec_, Jul 15 2021

%e Restricted growth strings: a(0)=1 corresponds to the empty string, a(1)=1 to [0],

%e a(2)=3 to [00], [01], [02], [03], and [04], a(3) = 29 to

%e RGS F

%e .1: [ 0 0 0 ] [ 0 0 0 ]

%e .2: [ 0 0 1 ] [ 0 0 0 ]

%e .3: [ 0 0 2 ] [ 0 0 0 ]

%e .4: [ 0 0 3 ] [ 0 0 0 ]

%e .5: [ 0 0 4 ] [ 0 0 4 ]

%e .6: [ 0 1 0 ] [ 0 0 0 ]

%e .7: [ 0 1 1 ] [ 0 0 0 ]

%e .8: [ 0 1 2 ] [ 0 0 0 ]

%e .9: [ 0 1 3 ] [ 0 0 0 ]

%e 10: [ 0 1 4 ] [ 0 0 4 ]

%e 11: [ 0 2 0 ] [ 0 0 0 ]

%e 12: [ 0 2 1 ] [ 0 0 0 ]

%e 13: [ 0 2 2 ] [ 0 0 0 ]

%e 14: [ 0 2 3 ] [ 0 0 0 ]

%e 15: [ 0 2 4 ] [ 0 0 4 ]

%e 16: [ 0 3 0 ] [ 0 0 0 ]

%e 17: [ 0 3 1 ] [ 0 0 0 ]

%e 18: [ 0 3 2 ] [ 0 0 0 ]

%e 19: [ 0 3 3 ] [ 0 0 0 ]

%e 20: [ 0 3 4 ] [ 0 0 4 ]

%e 21: [ 0 4 0 ] [ 0 4 4 ]

%e 22: [ 0 4 1 ] [ 0 4 4 ]

%e 23: [ 0 4 2 ] [ 0 4 4 ]

%e 24: [ 0 4 3 ] [ 0 4 4 ]

%e 25: [ 0 4 4 ] [ 0 4 4 ]

%e 26: [ 0 4 5 ] [ 0 4 4 ]

%e 27: [ 0 4 6 ] [ 0 4 4 ]

%e 28: [ 0 4 7 ] [ 0 4 4 ]

%e 29: [ 0 4 8 ] [ 0 4 8 ]

%e [_Joerg Arndt_, Apr 30 2011]

%p A004213 := proc(n)

%p add(4^(n-m)*combinat[stirling2](n,m),m=0..n) ;

%p end proc:

%p seq(A004213(n),n=0..30) ; # _R. J. Mathar_, Aug 20 2022

%t Table[4^n BellB[n, 1/4], {n, 0, 20}] (* _Vladimir Reshetnikov_, Oct 20 2015 *)

%o (PARI) x='x+O('x^66);

%o egf=exp(intformal(exp(4*x))); /* = 1 + x + 5/2*x^2 + 29/6*x^3 + 67/8*x^4 + ... */

%o /* egf=exp(1/4*(exp(4*x)-1)) */ /* alternative computation */

%o Vec(serlaplace(egf)) /* _Joerg Arndt_, Apr 30 2011 */

%o (Maxima)

%o a(n):=if n=0 then 1 else sum(4^(n-k)*binomial(n-1, k-1)*a(k-1), k, 1, n); \\ _Vladimir Kruchinin_, Nov 28 2011

%Y Cf. A075499 (row sums).

%Y A004211 (RGS where s(k)<=F(k)+2), A004212 (s(k)<=F(k)+3), A005011 (s(k)<=F(k)+5), A000110 (s(k)<=F(k)+1). - _Joerg Arndt_, Apr 30 2011

%K nonn,easy,eigen

%O 0,3

%A _N. J. A. Sloane_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 10:56 EDT 2024. Contains 371791 sequences. (Running on oeis4.)