This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A004134 Denominators in expansion of (1-x)^{-1/4} are 2^a(n). 10

%I

%S 0,2,5,7,11,13,16,18,23,25,28,30,34,36,39,41,47,49,52,54,58,60,63,65,

%T 70,72,75,77,81,83,86,88,95,97,100,102,106,108,111,113,118,120,123,

%U 125,129,131,134,136,142,144,147,149,153,155,158,160,165,167,170,172,176,178

%N Denominators in expansion of (1-x)^{-1/4} are 2^a(n).

%H Vincenzo Librandi, <a href="/A004134/b004134.txt">Table of n, a(n) for n = 0..1000</a>

%H R. Stephan, <a href="/somedcgf.html">Some divide-and-conquer sequences ...</a>

%H R. Stephan, <a href="/A079944/a079944.ps">Table of generating functions</a>

%F a(n) = 3*n - A000120(n). Recurrence: a(2n) = a(n) + 3n, a(2n+1) = a(n) + 3n + 2. Proved by _Mitch Harris_, following a conjecture by _Ralf Stephan_.

%F a(n) = A005187(n) + n. - _Cyril Damamme_, Aug 04 2015

%t Log2[ Denominator[ CoefficientList[ Series[ 1/Sqrt[Sqrt[1 - x]], {x, 0, 61}], x]]] (* _Robert G. Wilson v_, Mar 23 2014 *)

%t f[n_] := 3 n - DigitCount[n, 2, 1]; Array[f, 62, 0] (* or *)

%t a[n_] := If[ OddQ@ n, a[(n - 1)/2] + 3 (n - 1)/2 + 2, a[n/2] + 3 n/2]; a[0] = 0; Array[a, 62, 0] (* _Robert G. Wilson v_, Mar 23 2014 *)

%o (PARI) {a(n) = if( n<0, 0, 3*n - subst( Pol( binary( n ) ), x, 1) ) } /* _Michael Somos_, Aug 23 2007 */

%o (PARI) a(n) = 3*n - hammingweight(n); \\ _Joerg Arndt_, Mar 23 2014

%Y Cf. A004130.

%Y Cf. A005187.

%K nonn

%O 0,2

%A _N. J. A. Sloane_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 13 17:17 EST 2019. Contains 329970 sequences. (Running on oeis4.)