login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A004129 Number of solutions to postage stamp problem.
(Formerly M2525)
0

%I M2525

%S 1,3,6,9,13,17,22,27,33,40,47,56,65,74,83,94,105

%N Number of solutions to postage stamp problem.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H R. L. Graham and N. J. A. Sloane, <a href="http://neilsloane.com/doc/RLG/073.pdf">On Additive Bases and Harmonious Graphs</a>, SIAM J. Algebraic and Discrete Methods, 1 (1980), 382-404, doi:10.1137/0601045.

%H Simon Plouffe, <a href="http://www.lacim.uqam.ca/%7Eplouffe/articles/MasterThesis.pdf">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992.

%H Simon Plouffe, <a href="http://www.lacim.uqam.ca/%7Eplouffe/articles/FonctionsGeneratrices.pdf">1031 Generating Functions and Conjectures</a>, Université du Québec à Montréal, 1992.

%F The g.f. (z^4+z^3+2*z^2+2*z+1)*(z^2+z+1)/(z-1)/(z^5+z^4+z^3-z-1) conjectured by _Simon Plouffe_ in his 1992 dissertation is false. - _Sean A. Irvine_, Nov 21 2015

%K nonn,more

%O 2,2

%A _N. J. A. Sloane_

%E a(15)-a(18) from _Sean A. Irvine_, Nov 21 2015

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 23 03:21 EDT 2019. Contains 328335 sequences. (Running on oeis4.)