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ENUMERATING UNLABELLED HAMILTONIAN CIRCUITS
David Singmaster

When considering Hamiltonian circuits (HC's) in a
graph G which has a high degree of symmetry, one may
want to consider HC's as being equivalent under the
automorphisms of G and under the cyclic shifts and
reversals of a circuit. We refer to these equivalence
~classes as unlabelled HC's. In the first part of this
paper, I discuss these concepts and their elementary
properties. Then I discuss methods of enumerating
unlabelled HC's, the results I have obtained for the
Platonic solids and for the n-dimensional octahedron,
and some other known results.

I. DEFINITIONS AND BASIC PROPERTIES.

Let G be a simple graph, i. e. without loops or
multiple edges. We label the points of G by the intef
gers 1, 2, «ve5 P 7 [G| in some manner. »

1. DEFINITION. é'labelled Hamiltonian circuit of

—_—

G ig_g_permutation (vl, v2; cens VP) of the vertices of

G such that ViVi is an edge of G for each i, where
i + 1 is taken (mod p) (i. e. VoV is also an-edge of
G)n

Let L denote the set of labelled HC's of G. Recall
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that a permutation f of the symmetrie group SP is an
automorphism of G means that ij is an edge of G if and
only if £(i)£(j) is an edge of G. The automorphisms of
G form a group A. In our examples, A will be the sym-
metry group of some polyfope; An automorphism £ of G
acts on L as follows: . , "‘

(V)5 Vs wees V) T (£(v))s £(v,)5 ens £V D).
We shall generally consider A as a group acting on L.
Thus A induces an equivalence relation on L and we
denote the set of equivalence classes by L/A.

Two HC's may also be equlvalent under cyclic shifts
and reversale of circuits. Let s, r be the functlons

~ on L defined by:

1

S(Vl$>v2’ e e > vp) (v2) V3, oeu; VP, Vl);

r(vl, Vos sees Vp). = '(VP; cees Voo vl).
Let D be the group generated by s and r. D has 2p ele-
ments and is the dihedral group Dp of symmetbies'of a
regular p—gon.

D and A generate a group B = A X D of bl]ectlons on
L. Further, the elements of D and of A commute so that
B is a subgroup of A ® D and both A and D are normal
subgroups of B. B induces an equivalence relation on L
which includes the relation induced by A. We denote

the set of equivalence classes by L/B.
2. DEFINITION. An unlabelled Hamiltonian circuit

of G is an equivalence class of L/B.

e e —— ———

We let U = L/B be the set of unlabelled HC's of G.

Before continuing, let us observe that B can be a

proper subgroup of A @ D. Consider G = K, (= C3), the

¢
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complete graph on 3 vertices (= the 3-cycle). Then L
consists of all permutationé of 3 points and B = A = D
= 83 is the symmetric group on 3 elements. For example,
s(1,2,3) = (2,3,1), so that (1,2,3) ~ (2,3,1) by an
action of D, but the pérmufation f = (1,2,3) has
f(l,2;3) = (2,3,1) so that these circuits are already

equi&alent by an action of A. Here we have |Ll =6,
|u/al = |u] = 1. . o
3. PROPOSITION. U = L/B_ = (L/A)/(B/A), where

the right hand side is the set of equivalence classes

of L/A with respect to the equivalence relation induced

on L/A by the guotient group B/A.

The proof is straightforward and left to the .

reader.
3.1. COROLLARY. |L/A|/2p < |u/B] < |L/a].
Proof. This follows since 1 < |B/A| d Ip| = 2p.

4, PROPOSITION. All the classes in L/A have |A|

elements.

Proof. Let & be a HC in L and let AL = {£(2)|feA}
be the equivalence class of & in L/A. The mapping from
"~ A to AL given by £ » f(R) is surjective. It is also
injective, since if £(2) = g(2), then f(vi) = g(vi) for
each vertex Vs hence £ = g.

4,1, COROLLARY. |L| = |[A]-|L/A| and
Llszlal 5 ol < [Ll/1al,

Since both A and D are normal in B, it is possible
to interchange the roles of A and D in the above results
and in the next Section. This may be more natural when

|Al is small, such as in the problem of knight's
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circuits on an n X n chéssboard,,where |A] = 8 and [DI'
= 2n2. In this context, authors have always referred
to the equivalence classes L/D as being thé HCfs.‘

The ideas of this Section have beén implicit‘in
previous work on the n-cube (2) and on the Platonlc

solids [1 pp. 262-2663 4 6}

¥I. COMPUTATIONAL METHODS.

The problemiofAcounting HC's @n a graph;G-breaks
into Sevéréi’typesAof problem depending upon'whethep.'.
one wants labelled HC's or unlabelled ones or both and
upon whether one wants the actual HC's or just the
number of .them. In any case; it is generally sufficient
to determine L/A rather than L and this reduées our work |
by a factof of |A[. In this section, we dlscuss methods*
of computing L/A and of obtalnlnCr U from it. A

The first method consists of considering ciasses
 of L/A as being represented by an element of L. Wev
generate elements of L by some method, usuallyia Y"back-
track" method, and we restrict the output to elements
which are distinct under the action of A. The resticts
ion can be one or a combination of three types. These
~types can be used in any kind of backtrack process [12;
5). I will describe them all here although I have only
used the first in computing L/A; the other types have
been used in computing U. -

A. Initial restriction. Here we require the HC

to begin in a certain way. To illustrate, consider the

cube in Figure 1. The cube has IA[ = 48. We can move
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FIGURE 1.

the cube so that our first vertex v, = 1. Then we can |

1 ,
rotate the cube about the axis 16 so that v, = 2 and we

can reflect about the plane 1256 so that v32= 3. We can
then complete the HC in only two ways, so lL/Al = 2 and-
|| = 96. This kind of restriction can be easily incor-
poratéd into any standard algorithm for finding HC's
such as that of,(lB}.: This restriction was sufficient
for studying the Platonic solids, yielding the results
stated in (9) and in Section III.

' B.. Rejection during generation. If an initial

segment, which has been generated, is equivalent under

an action of A to an initial segment which has previous-
ly been considered, we reject it and hence any circuit
having this initial segment. Such testing will slow

‘down each step of the backtracking, but will reduce the
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number of possibilities considered. One must balance
these factors in deciding how mush testing to carry out
at each stage. Incorporating such tests into any stan-
- dard algorithm is not difficult. .Such fejections were

used in dealing with the n-octahedron, see Section” IV.

C. Rejection after generation. If a HC is equi~
valent by an action of A to one previously found; we
reject it. Such testing is essentially added on to the
end of the generation algorlthm. The testing must be
sufficient to detect any equlvalences not covered by
types A and_B.

One can carry out this testing'in two ways. The
first method assumes that we have stored a list of ali
circuits generated. Then we work through the list,
taking the first remaiﬁing element and applying the
actions of”A (or those not covered by previquS'restrict—
ions) to it. The resulting equivalent circuits are de-
- leted from the 1lst. When we finish, we hsve a list of
>dlst1nct representatlves for L/A. T call this a sieving'
method, by virtue of its similarity to the sieve of
Erastothenes. I used this technique for ‘the Platonic

solids. This'technlque can only be applied when the
list of generated circuits‘is small enough to'store;‘.

The second method of rejectiohisfter generation>
requires that the HC's are being generated in some known

order, usually the lexicographic order of.fhe backtrack
‘algorithm. As each mew circuit is generated; we apply
the actions of A (or those not previously covered) to
it. If any action gives a circuit whlch precedes the

present one in the order of generatlon, then the present
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one is not new and is rejected. I used this_method for
. the n-octahedron.

Ve can also compute L/A by an entlrely different
approach. In this method we represent a HC in some
other way than as a permutation of vertices. We do this
in such a way that HC's which are equivalent under A
have a small number of represeﬂtations, hopefully only
one. In fact, Hamilton's first work (6 43 1, pp. 262-
266) on HC's on the dodecahedron used thls approach. -
As one proceeds along a HC and arrlves at a vertex,
there are two edges leading out, one to the rlght and
one to the left. If we denote’ these as r and %, then a
HC is repwesented by a 20-tuple of r's and &'s, subject
to certain conditions arising from the relations 25 =
rs = 1, r2r = frrl, etc. Such a sequence is invariant
under the proper symmetries of the dodecahedron, while
the improper symmetfies simply interchange r and L.

Hamilton's work 1is notable as the first presentation of
a group by generators and relations. A similar method
can be applied to the other Platonic solids (%)

A related representation has been used for the
‘n-cube.{3; 8). On the n-cube, the n edgee at a vertex
correspond to the n dimenslons, SO we can denote the
edge along which the HC leaves a vertex by an 1nteger
from 1 to n. Then a HC is represented by a 2" ~-tuple of
integers from 1 to n, subiject to certain condltlons.
Unfortunately there are still n! such sequences for
each class of L/A. '

' In Sectlon v, I describe a representatlon for the

n- octahedron which gives only one representative for
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each class in L/A.

in any case, we must generate the representatives
by some algorithm. If there are several representatives
for a class of L/A, then we must apply'some combination
of our restrictions A, B, C to thain just one repre-
seﬂtative for each class. _

Now consider the problem of finding U = L/B. . If
we are not finding L/A, then the above discuésions can'
be carried over-to L/B simply by replacing A by B. If
we are finding L/A, then we can find L/B by rejection
after generation, as described in C above, but we néed
only test for equivaléhce under the actions of B/A =
(A x D)/A = D/(AN D), or more broadly, under the ’

actions of D.

' {II. PLATONIC SOLIDS.

I have appiied the first method of computing L/A
and the sieving method of rejection after gemeration to
find L/B = U for the regular polyhedra in three dim-

ensions. The results are given in Table 1.

. TABLE 1.
¢ Al qwal lu]
Tetrahedrén . 24 v 1 . 24 1
Cube - u8 2 - 96 1
Dodecahedron 120 10 1200 1
Octahedron 48 _ L 182 2
Icosahedron 120 256 30720 17
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The values of IU[ given in Table 1 agree with those

given in [4).

Iv. .THE N-DIMENSIONAL OCTAHEDRON.

The graph of the n-dimensional octahedron (or.cross

polytope) is the complete n-partite graph }(2’29“"2
That is, it consists of n pairs of points and every
point is. connected to every other point except the other
point of its pair. The paired points will be called

antipodal. In (lO], I have shown that
Ll = 52 (-1 ()22 24 (201001

and that |L| ~ (2n)!/e. o

The symmetry group of the n-octahedron has lA[ =
2”h! elements corresponding to the n! permutations of
pairs and the o™ interchanges within pairs. From the
point of view of one point, all other points are equi-
valent except its antipode. The actions of A upon a HC
will arbitrarily permute the vertices, except that anti-
podal points are always carried to antipodal points.
- From this, we see that an element of L/A is completely
determined by knowing which positions of a HC contain
antipodal points. To illustrate, consider the
3-octahedron in Figure 2, and consider the HC, & =
(1,2,3,4,5,6). The antipodal points are in the pairs
of positions (1,4), (2,5), (3,6) and these three pairé:
characterize A% , the equivalence class of & in L/A.

Using this observation, we define the difference
vector (dl’dQ""’dQn) of a HC (v15v2,...,v2n) by let-

ting di be the distance from vy to its antipodal point
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3. |
FIGURE 2.

vvi+di’ measured along the”HQ. :That is?‘if vi:and vi,
i < j, are antipodes, then di = j-i and dj = 2n+i-j. )
Two HC's are equivalent under A if and only if they have
the same difference vector. For example, the difference
vector of the HC & of Figure 2 is (3,3,3,3,3,3). The
other difference vectors for the 3-octahedron are:
(2,3,4,2,3,4), (3,4,2,3,4,2), (4,2,3,4,2,3). 7

We have that a vector of integers (dl,dz,.}.,dQn)
is a difference vector if and only if

v a) 2. < di' < 2n-2;

b) di + di+di = 2n.

(Here i + di is taken (mod 2n).) Further, the generat-
ing actions s and r of D have simple effects of differ-

ence vectors:

s(dl, cons dQn) = A(d2,7;r.,‘d2n, dl);
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r(dl, e d2n) = (2n—d2n, vees 2n—dl).

SincevlL[ is known, we can restrict the generation
of difference vectors. After some experimentation, the

following conditions were incorporated during generation:

_a) dl = min di'
b) If d, =d, themdy , 2 dj.
. e) If le: 2, then di+l < n. .
d) - If di = dl = 2, then di+l < 2n—d2.

For n = 8, these. restrictions reduce the number of diff-
erence vectors generated by a factor of 19.6, thus to
only about. 1.56 |u]. The results for 2<ng8 arev 
given in Table 2 where IVG[ is the number of difference
vectors generated and R is the ratio yn|u||a|/|L]. The
program was written in Algol and took about 8 minutes

on an ICL 1905E. The values of R lead me to:

5. CONJECTURE. |U] ~ |L|/un]A].

(Compare with Corollary 4.1 which gives IU‘ >
|L]/unfal.)

V. SOME OTHER KNOWN RESULTS.

.For fhe n-cube, [Ul =1 forn =2, 3 and IU[ = 9.
for n = 4 (8]. I have the impression that the value for NeX 2.

n = 5 is known but I cannot locate it. ‘ IF‘io
A number of results for the problem of finding .

knight's circuits on a chess board are given in [l, Pp-

174-1853 7). For aisqpare n x n board, n must be even

for any cireuits to exist and there are none for n = 4.

Duby (2) and Stone (ll) independently found lL/Dl = 9862

for the case n = 6, using a method similar to that given
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~in [13} For the case n = 8, Duby found 75,000 circuits
_having the same first 35 moves and he cautlously
expressed "a strong belief that the total number ... can
be over one million". Stome and I would estimate about
3_023"3 such circuits on a heuristic probabilistic‘basis.
" In such a situation of an essentially uncomputable
number of HC's, one might maturally .ask only for cir-
cuits having some interesting property, such as being
1invarianf'undef_ﬁ‘or'part of A. For a square board, |AI
= 8, but there are mno circuits invariant under all of A.
On the 6 x 6 board, there are ten elements of - L/D
which are invariant under rotations of the board. Five
of these are shown in (7),vthe other five being their
| reflectioﬁs. I do not know if such circuits have been

“enumerated on the 8 X 8 board.
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