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Let a, b be coprime integers such that a > 1, a + b > 1. The Prime Number
Theorem for Arithmetic Progressions implies that

In (Iemy <<, {ak +b}) ~ An
as n — oo, where the constant A is
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(independent of b) and ¢ is the Euler totient function [1, 2]. What happens if we
replace the linear polynomial ax + b by a quadratic polynomial az? + bx + ¢? On
the one hand, if the quadratic is reducible over the integers, then there is not much
change (the growth rate is still An for some new rational number A). On the other
hand, if the quadratic is irreducible over the integers, then there is a more interesting
outcome [3]:

In (lemi<i<, {ak* + bk + c}) =nln(n) + Bn + o(n)

as n — oo, where the constant B will occupy our attention for the remainder of this
essay.

Henceforth we set a =1, b =0, ¢ € {1,2,—2}. It follows that the fundamental
discriminant d € {—4, —8,8}. The constant B for our three special cases is

] 00 CI(2k> L’d(Qk) In(2) Ly(1)
B = y-1-5n(2) - ,; (<(2k) T Tu@) T 1) L)

—0.0662756342... if c =1,
= —0.4895081630... if c=2,
0.3970903472... if c=—-2.

As an example, if ¢ = 1, we have [4]
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where A is Gauss’ lemniscate constant [5]; it can be shown here that

3 ~
B=-3—3In(2)+2y +4C

where C' = 0.7047534517... is the second-order constant corresponding to non-hypotenuse
numbers [6, 7]. Similar relationships with second-order constants listed in [8] can be
found.

Cilleruelo [3] further noted that, in the general case,

B=Cy+ Cy+ C(f)

where

— ¢'(2M)
Co=v-1-2mn(2) - ) = —1.1725471674...

is universal,

 La(2") — _In(p)
Ca=d T30 ~ 22w
= La(2) pld k=1 P -1
depends only on d, and C(f) is too complicated to reproduce (but is equal to
(3/2)In(2) for our three special cases). Although other irreducible quadratics are
examined in [3], we note the absence of 22 +3 and wonder what can be deduced here.
See also [9, 10, 11, 12].
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