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Let ,  be coprime integers such that  ≥ 1,  +  ≥ 1. The Prime Number

Theorem for Arithmetic Progressions implies that

ln (lcm1≤≤ {  + }) ∼ 

as →∞, where the constant  is
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
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X
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1



(independent of ) and  is the Euler totient function [1, 2]. What happens if we

replace the linear polynomial  +  by a quadratic polynomial 2 +  + ? On

the one hand, if the quadratic is reducible over the integers, then there is not much

change (the growth rate is still  for some new rational number ). On the other

hand, if the quadratic is irreducible over the integers, then there is a more interesting

outcome [3]:
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=  ln() + + ()

as →∞, where the constant  will occupy our attention for the remainder of this

essay.

Henceforth we set  = 1,  = 0,  ∈ {1 2−2}. It follows that the fundamental

discriminant  ∈ {−4−8 8}. The constant  for our three special cases is

 =  − 1− 1
2
ln(2)−
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=

⎧⎨⎩ −00662756342 if  = 1

−04895081630 if  = 2

03970903472 if  = −2
As an example, if  = 1, we have [4]
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where Λ is Gauss’ lemniscate constant [5]; it can be shown here that

 = −3− 3
2
ln(2) + 2 + 4̃

where ̃ = 07047534517 is the second-order constant corresponding to non-hypotenuse

numbers [6, 7]. Similar relationships with second-order constants listed in [8] can be

found.

Cilleruelo [3] further noted that, in the general case,

 = 0 +  + ()

where

0 =  − 1− 2 ln(2)−
∞X
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= −11725471674

is universal,
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depends only on , and () is too complicated to reproduce (but is equal to

(32) ln(2) for our three special cases). Although other irreducible quadratics are

examined in [3], we note the absence of 2±3 and wonder what can be deduced here.
See also [9, 10, 11, 12].
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