Formula for A003324

OEIS A003324: Let \(b(0) \) be the sequence 1,2,3,4. Proceeding by induction, let \(b(n) \) be a sequence of length \(2^{n+2} \). Quarter \(b(n) \) into four blocks \(A, B, C, D \) each of length \(2^n \), so that \(b(n) = ABCD \), then \(b(n + 1) = ABCDADCB \).

Write \(a(n) \) as the \(n \)-th term of A003324.

Theorem. \(a(n) = n \mod 4 \) for odd \(n \); for even \(n \), write \(n = (2k + 1) \times 2^e \), then \(a(n) = 2 \) if \(k + e \) is odd, \(a(n) = 4 \) if \(k + e \) is even.

Proof. Define \(s(n) = n \mod 4 \) for odd \(n \), \(s(n) = 2 \) for \(n = (2k + 1) \times 2^e \) with odd \(k + e \), \(s(n) = 4 \) for \(n = (2k + 1) \times 2^e \) with even \(k + e \), then our goal is to show \(a(n) = s(n) \) for all \(n \). We shall prove this by induction.

For \(n = 1, 2, 3, 4 \), we have \(a(n) = n = s(n) \). Suppose \(a(n) = s(n) \) for \(n \leq 2^N \), \(N \geq 2 \). By definition we have

\[
a(2^N + m) = \begin{cases}
a(m), & 0 < m \leq 2^{N-2} \text{ or } 2^{N-1} < m \leq 3 \times 2^{N-2}, \\
a(m + 2^{N-1}), & 2^{N-2} < m \leq 2^{N-1}, \\
a(m - 2^{N-1}), & 3 \times 2^{N-2} < m \leq 2^N.
\end{cases}
\]

For convenience, define

\[
\varphi_N(m) = \begin{cases}
m, & 0 < m \leq 2^{N-2} \text{ or } 2^{N-1} < m \leq 3 \times 2^{N-2}, \\
m + 2^{N-1}, & 2^{N-2} < m \leq 2^{N-1}, \\
m - 2^{N-1}, & 3 \times 2^{N-2} < m \leq 2^N.
\end{cases}
\]

Then we have \(a(2^N + m) = a(\varphi_N(m)) = s(\varphi_N(m)) \) for \(m \leq 2^N \). So we just have to show \(s(2^N + m) = s(\varphi_N(m)) \) for \(m \leq 2^N \).

The case where \(2^N + m \) is odd is easy: for odd \(2^N + m \), it suffices to show \(2^N + m \equiv \varphi_N(m) \) (mod 4). If \(N \geq 3 \), this is obviously true. If \(N = 2 \), then \(\varphi_N(m) = m \equiv 2^N + m \) (mod 4).

For even \(2^N + m \), write \(m = (2k + 1) \times 2^e \leq 2^N \). If \(e \leq N - 2 \), then \(s(2^N + m) = s((2k + 2^{N-e-1} + 1) \times 2^e) \) and \(s(\varphi_N(m)) = s(m + 2^{N-e}) = s((2(k + 2^{N-e-2}) + 1) \times 2^e) \) for some \(e \in \{-1, 0, 1\} \). Since \(k + 2^{N-e-1} + 1 \equiv k + 2^{N-e-2} + e \) (mod 2) (if \(e = N - 2 \), then \(m = 2^{N-2} \) or \(3 \times 2^{N-2} \), so \(e = 0 \)), we have \(s(2^N + m) = s(\varphi_N(m)) \).

If \(e \geq N - 1 \), the only possibilities are \(m = 2^N - 1 \) or \(m = 2^N \).

- If \(m = 2^N - 1 \), then \(2^N + m = (2 \times 1 + 1) \times 2^N - 1 \), \(\varphi_N(m) = (2 \times 0 + 1) \times 2^N \), since \(1 + (N - 1) = 0 + N \), we have \(s(2^N + m) = s(\varphi_N(m)) \).

- If \(m = 2^N \), then \(2^N + m = (2 \times 0 + 1) \times 2^{N+1} \), \(\varphi_N(m) = (2 \times 0 + 1) \times 2^{N-1} \), since \(0 + (N + 1) \equiv 0 + (N - 1) \) (mod 2), we also have \(s(2^N + m) = s(\varphi_N(m)) \).

So \(s(2^N + m) = s(\varphi_N(m)) \) for \(m \leq 2^N \). Then we have \(a(n) = s(n) \) for \(n \leq 2^{N+1} \), by induction, the formula is proved. \(\square \)