Formula for A003324

OEIS A003324: Let $b(0)$ be the sequence $1,2,3,4$. Proceeding by induction, let $b(n)$ be a sequence of length 2^{n+2}. Quarter $b(n)$ into four blocks A, B, C, D each of length 2^{n}, so that $b(n)=A B C D$, then $b(n+1)=A B C D A D C B$.

Write $a(n)$ as the n-th term of A003324.
Theorem. $a(n)=n \bmod 4$ for odd n; for even n, write $n=(2 k+1) \times 2^{e}$, then $a(n)=2$ if $k+e$ is odd, $a(n)=4$ if $k+e$ is even.

Proof. Define $s(n)=n \bmod 4$ for odd $n, s(n)=2$ for $n=(2 k+1) \times 2^{e}$ with odd $k+e, s(n)=4$ for $n=(2 k+1) \times 2^{e}$ with even $k+e$, then our goal is to show $a(n)=s(n)$ for all n. We shall prove this by induction.

For $n=1,2,3,4$, we have $a(n)=n=s(n)$. Suppose $a(n)=s(n)$ for $n \leq 2^{N}, N \geq 2$. By definition we have

$$
a\left(2^{N}+m\right)= \begin{cases}a(m), & 0<m \leq 2^{N-2} \text { or } 2^{N-1}<m \leq 3 \times 2^{N-2} \\ a\left(m+2^{N-1}\right), & 2^{N-2}<m \leq 2^{N-1} \\ a\left(m-2^{N-1}\right), & 3 \times 2^{N-2}<m \leq 2^{N}\end{cases}
$$

For convenience, define

$$
\varphi_{N}(m)= \begin{cases}m, & 0<m \leq 2^{N-2} \text { or } 2^{N-1}<m \leq 3 \times 2^{N-2} \\ m+2^{N-1}, & 2^{N-2}<m \leq 2^{N-1} \\ m-2^{N-1}, & 3 \times 2^{N-2}<m \leq 2^{N}\end{cases}
$$

Then we have $a\left(2^{N}+m\right)=a\left(\varphi_{N}(m)\right)=s\left(\varphi_{N}(m)\right)$ for $m \leq 2^{N}$. So we just have to show $s\left(2^{N}+m\right)=$ $s\left(\varphi_{N}(m)\right)$ for $m \leq 2^{N}$.

The case where $2^{N}+m$ is odd is easy: for odd $2^{N}+m$, it suffices to show $2^{N}+m \equiv \varphi_{N}(m)(\bmod 4)$. If $N \geq 3$, this is obviously true. If $N=2$, then $\varphi_{N}(m)=m \equiv 2^{N}+m(\bmod 4)$.

For even $2^{N}+m$, write $m=(2 k+1) \times 2^{e} \leq 2^{N}$. If $e \leq N-2$, then $s\left(2^{N}+m\right)=s\left(\left(2\left(k+2^{N-e-1}\right)+1\right) \times 2^{e}\right)$ and $s\left(\varphi_{N}(m)\right)=s\left(m+\varepsilon 2^{N-1}\right)=s\left(\left(2\left(k+\varepsilon 2^{N-e-2}\right)+1\right) \times 2^{e}\right)$ for some $\varepsilon \in\{-1,0,1\}$. Since $k+2^{N-e-1}+e \equiv$ $k+\varepsilon 2^{N-e-2}+e(\bmod 2)\left(\right.$ if $e=N-2$, then $m=2^{N-2}$ or $3 \times 2^{N-2}$, so $\varepsilon=0$), we have $s\left(2^{N}+m\right)=s\left(\varphi_{N}(m)\right.$).

If $e \geq N-1$, the only possibilities are $m=2^{N-1}$ or $m=2^{N}$.

- If $m=2^{N-1}$, then $2^{N}+m=(2 \times 1+1) \times 2^{N-1}, \varphi_{N}(m)=(2 \times 0+1) \times 2^{N}$, since $1+(N-1)=0+N$, we have $s\left(2^{N}+m\right)=s\left(\varphi_{N}(m)\right)$.
- If $m=2^{N}$, then $2^{N}+m=(2 \times 0+1) \times 2^{N+1}, \varphi_{N}(m)=(2 \times 0+1) \times 2^{N-1}$, since $0+(N+1) \equiv 0+(N-1)$ $(\bmod 2)$, we also have $s\left(2^{N}+m\right)=s\left(\varphi_{N}(m)\right)$.

So $s\left(2^{N}+m\right)=s\left(\varphi_{N}(m)\right)$ for $m \leq 2^{N}$. Then we have $a(n)=s(n)$ for $n \leq 2^{N+1}$, by induction, the formula is proved.

