Formula for A003324

OEIS A003324: Let b(0) be the sequence 1,2,3,4. Proceeding by induction, let b(n) be a sequence of length 2^{n+2} . Quarter b(n) into four blocks A, B, C, D each of length 2^n , so that b(n) = ABCD, then b(n+1) = ABCDADCB.

Write a(n) as the *n*-th term of A003324.

Theorem. $a(n) = n \mod 4$ for odd n; for even n, write $n = (2k + 1) \times 2^e$, then a(n) = 2 if k + e is odd, a(n) = 4 if k + e is even.

Proof. Define $s(n) = n \mod 4$ for odd n, s(n) = 2 for $n = (2k+1) \times 2^e$ with odd k+e, s(n) = 4 for $n = (2k+1) \times 2^e$ with even k+e, then our goal is to show a(n) = s(n) for all n. We shall prove this by induction.

For n = 1, 2, 3, 4, we have a(n) = n = s(n). Suppose a(n) = s(n) for $n \le 2^N$, $N \ge 2$. By definition we have

$$a(2^{N} + m) = \begin{cases} a(m), & 0 < m \le 2^{N-2} \text{ or } 2^{N-1} < m \le 3 \times 2^{N-2} \\ a(m+2^{N-1}), & 2^{N-2} < m \le 2^{N-1}, \\ a(m-2^{N-1}), & 3 \times 2^{N-2} < m \le 2^{N}. \end{cases}$$

For convenience, define

$$\varphi_N(m) = \begin{cases} m, & 0 < m \le 2^{N-2} \text{ or } 2^{N-1} < m \le 3 \times 2^{N-2} \\ m+2^{N-1}, & 2^{N-2} < m \le 2^{N-1}, \\ m-2^{N-1}, & 3 \times 2^{N-2} < m \le 2^N. \end{cases}$$

Then we have $a(2^N + m) = a(\varphi_N(m)) = s(\varphi_N(m))$ for $m \leq 2^N$. So we just have to show $s(2^N + m) = s(\varphi_N(m))$ for $m \leq 2^N$.

The case where $2^N + m$ is odd is easy: for odd $2^N + m$, it suffices to show $2^N + m \equiv \varphi_N(m) \pmod{4}$. If $N \ge 3$, this is obviously true. If N = 2, then $\varphi_N(m) = m \equiv 2^N + m \pmod{4}$.

For even $2^N + m$, write $m = (2k+1) \times 2^e \le 2^N$. If $e \le N-2$, then $s(2^N + m) = s((2(k+2^{N-e-1})+1) \times 2^e)$ and $s(\varphi_N(m)) = s(m+\varepsilon 2^{N-1}) = s((2(k+\varepsilon 2^{N-e-2})+1) \times 2^e)$ for some $\varepsilon \in \{-1, 0, 1\}$. Since $k+2^{N-e-1}+e \equiv k+\varepsilon 2^{N-e-2}+e \pmod{2}$ (if e = N-2, then $m = 2^{N-2}$ or $3 \times 2^{N-2}$, so $\varepsilon = 0$), we have $s(2^N + m) = s(\varphi_N(m))$. If $e \ge N-1$, the only possibilities are $m = 2^{N-1}$ or $m = 2^N$.

- If $m = 2^{N-1}$, then $2^N + m = (2 \times 1 + 1) \times 2^{N-1}$, $\varphi_N(m) = (2 \times 0 + 1) \times 2^N$, since 1 + (N-1) = 0 + N, we have $s(2^N + m) = s(\varphi_N(m))$.
- If $m = 2^N$, then $2^N + m = (2 \times 0 + 1) \times 2^{N+1}$, $\varphi_N(m) = (2 \times 0 + 1) \times 2^{N-1}$, since $0 + (N+1) \equiv 0 + (N-1)$ (mod 2), we also have $s(2^N + m) = s(\varphi_N(m))$.

So $s(2^N + m) = s(\varphi_N(m))$ for $m \le 2^N$. Then we have a(n) = s(n) for $n \le 2^{N+1}$, by induction, the formula is proved.