The On-Line Encyclopedia of Integer Sequences

Neil J.A. Sloane
President, OEIS Foundation
II South Adelaide Avenue Highland Park, NJ

The new OEIS: oeis.org

- 206,500 sequences (20,000 in first year)
- Owned and maintained by OEIS Foundation (a 501 (c) 3 public charity)
- Need more editors to help
- Need more eyes searching for sequences
- Need help with "kiosk" for science museums
- Need help with "music"

Facts about the OEIS

- Accurate information about 200,000 sequences
- Definition, formulas, references, links, programs
- View as list, table, graph, sounds!
- 50 new entries, 50 updates every day
- Traffic: $155 \mathrm{~GB} /$ month
- 2000 articles and books cite the OEIS
- Often called one of best math sites on the Web
- Maintained by NJAS for 45 years

Facts about the OEIS

- Accurate information about 200,000 sequences
- Definition, formulas, references, links, programs
- View as list, table, graph, sounds!
- 50 new entries, 50 updates every day
- Traffic: $155 \mathrm{~GB} /$ month
- 2000 articles and books cite the OEIS
- Often called one of best math sites on the Web
- Maintained by NJAS for 45 years

Facts about the OEIS

- Accurate information about 200,000 sequences
- Definition, formulas, references, links, programs
- View as list, table, graph, sounds!
- 50 new entries, 50 updates every day
- Traffic: $155 \mathrm{~GB} /$ month
- 2000 articles and books cite the OEIS
- Often called one of best math sites on the Web
- Maintained by NJAS for 45 years

Facts about the OEIS

- Accurate information about 200,000 sequences
- Definition, formulas, references, links, programs
- View as list, table, graph, sounds!
- 50 new entries, 50 updates every day
- Traffic: $155 \mathrm{~GB} /$ month
- 2000 articles and books cite the OEIS
- Often called one of best math sites on the Web
- Maintained by NJAS for 45 years

Facts about the OEIS

- Accurate information about 200,000 sequences
- Definition, formulas, references, links, programs
- View as list, table, graph, sounds!
- 50 new entries, 50 updates every day
- Traffic: $155 \mathrm{~GB} /$ month
- 2000 articles and books cite the OEIS
- Often called one of best math sites on the Web
- Maintained by NJAS for 45 years

How It All Began

Dec. 1963: Average height of random node in rooted labeled tree on n nodes:

$\mathrm{n}:$	1	2	3	4	5	6	\ldots
$\mathrm{a}(\mathrm{n}):$	0	I	8	78	944	13800	\ldots

Question: $\quad \frac{a(n)}{n^{n}} \rightarrow ?$ as $n \rightarrow \infty$
Polya counting theory (and John Riordan) \rightarrow

$$
\begin{aligned}
a(n) & =(n-1)!\sum_{k=0}^{n-2} \frac{n^{k}}{k!} \\
& \sim n^{n} \sqrt{\frac{2 \pi}{n}} \text { as } n \rightarrow \infty
\end{aligned}
$$

Poster

See OEIS Foundation web site: oeisf.org

Launches the OEIS Wiki!

The OEIS Foundation Inc.

S

the new version of the On-Line Encyclopedia of Integer Sequences

A000001 1, 1, 1, 2, 1, 2, 1, 5, 2, 2, 1, 5, 1, 2, 1, 14, 1, 5, 1, 5, 2, 2, 1, 15, 2, 2, 5, 4, 1, 4, 1, 51, 1
A000002 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, .
A000005 1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 6, 4, 4, 4, 9, A000010 1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16, 6, 18, 8, 12, 10, 22, 8, 20, 12, 18, .
A000031 1, 2, 3, 4, 6, 8, 14, 20, 36, 60, 108, 188, 352, 632, 1182, 2192, 4116, 7712, 14602, 27596, ...
A000041 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385, 490, 627, 792, A000045 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765,... A000055 1, 1, 1, 1, 2, 3, 6, 11, 23, 47, 106, 235, 551, 1301, 3159, 7741, 19320, 48629, 123867,... A000069 1, 2, 4, 7, 8, 11, 13, 14, 16, 19, 21, 22, 25, 26, 28, 31, 32, 35, 37, 38, 41, 42, 44, 47, .. A000105 1, 1, 1, 2, 5, 12, 35, 108, 369, 1285, 4655, 17073, 63600, 238591, 901971, 3426576, ..

A000108 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900,.
A000110 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597, 27644437, ...
A000326 0, 1, 5, 12, 22, 35, 51, 70, 92, 117, 145, 176, 210, 247, 287, 330, 376, 425, 477, 532, ...

A001006 1, 1, 2, 4, 9, 21, 51, 127, 323, 835, 2188, 5798, 15511, 41835, 113634, 310572, 853467, ...

A003035 1, 1, 2, 4, 6, 7, 10, 12, 16, 19, 22, 26, ..
A003173 1, 2, 3, 7, 11, 19, 43, 67, 163
A005132 0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9, 24, 8, 25, 43, 62, 42, 63, 41, 18, 42, 17, ... A005316 1, 1, 1, 2, 3, 8, 14, 42, 81, 262, 538, 1828, 3926, 13820, 30694, 110954, 252939, 933458, ... A006066 0, 0, 1, 2, 5, 7, 11, 15, 21,..

A064413 1, 2, 4, 6, 3, 9, 12, 8, 10, 5, 15, 18, 14, 7, 21, 24, 16, 20, 22, 11, 33, 27, 30, 25, 35, 28, 26, ... A087019 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 100, 111, 112, 113, 114, 115, 116, 117, 118, 119, 200, 211, 222, .. A090822 1, 1, 2, 1, 1, 2, 2, 2, 3, 1, 1, 2, 1, 1, 2, 2, 2, 3, 2, 1, 1, 2, 1, 1, 2, 2, 2, 3, 1, 1, 2, 1, 1,...
A110312 4, 1, 6, 5, 7, 5, 9, 7, 10, 6, 11, 10, 11, 11, 12, 12, 15, 14, .
A139250 0, 1, 3, 7, 11, 15, 23, 35, 43, 47, 55, 67, 79, 95, 123, 155, 171, 175, 183, 195, 207, 223, ...

Donate now at oeisf.org!
Contributions are deductible in the U.S.A.
The OEIS Foundation is a 501(c)(3) public charity.

OEIS - The Movie

Plots of 1000 sequences from the On-Line Encyclopedia of Integer Sequences

by T. D. Noe

© 2009-2010, The OEIS Foundation, Inc.

PUZZLES ONE TWO THREE
FOUR FIVE SIX 049
SEVEN EIGHT NINE 5 I
\qquad
0 LE
A36235

PUZZLES ONE TWO THREE

$$
\text { FOMR } \frac{\text { FIDIE }}{4}=\frac{S[X]}{9}
$$

SEDEN EDGHT MTRE
TEN EGEDEN ...
A36235

$$
\begin{aligned}
& \text { Two Sequences That Agree For } \\
& \text { a Long Time } \\
& \left\lfloor\left.\frac{2 n}{\log 2} \right\rvert\,=\right.\text { A078608 } \\
& \left|\frac{2}{2^{1 / n}-1}\right| \begin{array}{c}
\text { Differs for first time at } \mathrm{n}= \\
7774519 \mid 5729368
\end{array} \\
& \text { (see AI29935) }
\end{aligned}
$$

APPLICATIONS of OEIS

1988: JOSEPH NORTH OBSERVED
THAT IF TRuncate Gregory's
SERIES 5000000

$$
\pi \approx 4 \sum_{k=1}^{5000000} \frac{(-1)^{k+1}}{2 k-1}=4\left(1-\frac{1}{3}+\frac{1}{5} \cdots\right)
$$

THEN GET
3. $1415924535897932384646433837995027841 \ldots$
3. $141572653589793238452643382795028841 \cdots$

$$
\begin{aligned}
& 2,-2,10,-122,2770, \cdots \quad \Rightarrow \\
& 1,-1,5,-61,1385, \cdots=A 364
\end{aligned}
$$

EULER NUMBERS
J. BORUEIN, P. BORDEN, K. DILCHER,

AMER. MATH. MONTHLY, 1989:

$$
\pi-4 \sum_{k=1}^{N / 2} \frac{(-1)^{k+1}}{2 k-1} \sim 2 \sum_{m=0}^{\infty} \frac{E_{2 m}}{N^{2 m+1}}
$$

APPLICATIONS OLD THEOREM CATALAN NUMBER of OEIS
$C_{n}(A 108)$ IS ODD MF

$$
n=1,3,7,15,31,63, \cdots
$$

MOTEUTN NUMBERS (A1006)

$$
M_{n}=\sum\binom{n}{2 k} C_{k}
$$

THEOREM (DEUTSCH-SAGAN, TNT, ${ }^{2}$ O M_{n} IS EVEN MF
EITHER $n \in 4 S-2$ or $4 S$-1
WHERE $S=\{1,3,4,5,7, \ldots\}$ (A3159)
= NUMBERS WITH BINARY EXPANSION ENDING IN EVEN NO. OF O'S.

Four Unusual

Recurrences

- EKG sequence
- Gijswijt's sequence
- Recamán's sequence
- Van Eck's sequence

EKG Sequence (A644I3)

$$
\begin{aligned}
& I, 2,4,6,3,9,|2,8,|0,5,| 5, \ldots \\
& a(I)=I, a(2)=2, \\
& a(n)=\min k \text { such that }
\end{aligned}
$$

- GCD $\{\mathrm{a}(\mathrm{n}-\mathrm{I}), \mathrm{k}\}>\mathrm{I}$
- k not already in sequence
- Jonathan Ayres, 2001
- Analyzed by Lagarias, Rains, NJAS, Exper. Math., 2002

Theorems:

EKG Sequence

-The sequence is a permutation of the natural numbers

- $c_{1} n \leq a(n) \leq c_{2} n$

Conjectures

- $a(n) \sim n\left(1+\frac{1}{3 \log n}\right)$
for the main terms
- $\quad \cdots, 2 p, p, 3 p, \cdots($ primes $p>2)$
(Proved by Hofman \& Pilipczuk, 2008)

EKG Sequence LEMMA I IF ∞ MANY MULTIPLES OF PRIME P APPEAR, THEN ALL MULTIPLES DO.
Pf. Kp not in sequence

$$
\begin{aligned}
& \exists n_{0} \text { sit. } n \geqslant n_{0} \Rightarrow a(n)>k p \\
& \therefore a(n)=i p \quad \therefore a(n+1)=k p, \not *
\end{aligned}
$$

LEMMA 2 IF ALL MULTIPLES OF p APPEAR THEN ALL NUMBERS DO.
Ps. R not in sequence

$$
a(n)=k i p \quad a(n+1)=k
$$

THEOREM $\{a(x)\}$ IS PERM, OF $\{1,2,-\}$
Pf. IF ∞ MANY DIFF PRIMES,

$$
\therefore \infty \text { MANY } 2 p^{\prime} \text { 's, USE L1,L2. }
$$

IF FINITELY MANY DIFF PRIMES, ONE APPEARS D OFTEN, USE LI, LI.

QED

The Curling Number Conjecture

The Curling Number Conjecture

Definition
of
Curling
Number

CURLING NUMBER CONJECTURE

- start with any finite string
- APPEND CURLING NUMBER

REPEAT

- THEN MUST REACH A I !?
E.G.

START: $222322>$
THEN $\left.\begin{array}{lllllllll}2 & 3 & 2 & 2 & 2 & 3 & 3 & 2 & 1\end{array}\right]$ Boo!

Gijswijt's Sequence

Dion Gijswijt (Amsterdam), Fokko v. d. Bult, NJAS, Allan Wilks, John Linderman

Start with I, always append curling number

$$
\begin{aligned}
& \text { 1 } 1 \underline{2} \\
& 1 \text { | } 2 \quad \underline{2} \quad \underline{2} \\
& \text { | } 12 \\
& \text { 1 } 122223 \\
& 112 \\
& \begin{array}{llllll}
1 & 1 & 2 & 2 & 2 & 3
\end{array} \\
& \text { I } 12 \\
& \begin{array}{llllllllllllllll}
1 & 1 & 2 & 2 & 2 & 3 & 2 & \underline{2} & \underline{2} & \underline{3} & \underline{2} & \underline{2} & \underline{2} & \underline{3} & \underline{3} & \underline{2}
\end{array} \\
& \text { I } 12 \\
& a(220)=4 \\
& \text { (A090822) }
\end{aligned}
$$

Gijswijt, continued

Gijswijt, continued

Is there a 5 ?

Is there a 5 ?

300,000 terms: no 5

Gijswijt, continued

Is there a 5 ?
300,000 terms: no 5
$2 \cdot 10^{6}$ terms: no 5

Gijswijt, continued

Is there a 5 ?

300,000 terms: no 5
$2 \cdot 10^{6}$ terms: no 5
10^{120} terms: no 5

Gijswijt, continued

Is there a 5 ?

300,000 terms: no 5
$2 \cdot 10^{6}$ terms: no 5
10^{120} terms: no 5
NJAS, FvdB: first 5 at about term $10^{10^{23}}$

Gijswijt, continued

First n appears at about term

(F.v.d. Bult et al., J. Integer Sequences, 2007)
(A90822)

Gijswijt, continued

Proofs could be simplified if Curling Number Conjecture were true

How far can you get with an initial string of n 2's and 3's
 (before a I appears)?

THE UNIQUE RECORD STARTS:
LENGTH 8: 23222323 $\rightarrow 66$
LENGTH 22:

$$
\begin{aligned}
& 232232232322232322323 \\
& \rightarrow 142
\end{aligned}
$$

LENGH $48 \rightarrow 179$

LENGTH $77 \rightarrow 250$
JOINT WORK WITH

$$
\frac{\text { BEN CHAFFIN }}{(\text { INTEL) }}
$$

THEOREM
LET $\mu(n)=$ MAX LENGTH
ATTAINED STARTING WITH n 2's \& 3's.
IF S ACHIEVES $\mu(n)>\mu(n-1)+1$
THEN S DOES NOT
CONTAIN $W^{4}, W \neq \phi$.
(50 MOT 2.222)
Searched $\mathrm{n}<=53$
CONJECTURE
\therefore •S AlSO DOES
NOT CONTAIN 33. Searched $\mathrm{n}<=80$

Curling Number Conjecture, continued

Recamán's Sequence

0	1	2	3	4	5	6	7	8	9	\ldots
0	1	3	6	2	7	13	20	12	21	\ldots

$$
a_{n}=a_{n-1}-n
$$

if positive and new, otherwise

$$
a_{n}=a_{n-1}+n
$$

- from Bernardo Recamán Santos (Colombia), circa I992

Pin plot of A005132

Recamán, continued

Scatterplot of A005132(n)

Listen

Pin plot of A005132

Recamán, continued

Scatterplot of A005132(n)

Listen

Pin plot of A005132

Recamán, continued

Scatterplot of A005132(n)

Listen

Recamán, continued

When n appears for the first time:

1	2	3	4	5	6	7	8	9	10
1	4	2	131	129	3	5	16	14	12
11	12	13	14	15	16	17	18	19	20
10	8	6	31	29	27	25	23	99734	7

Red: records

Recamán, continued
Numbers that take a record number of steps to appear:

I	I
2	4
4	I 3 I
19	99,734
61	$18 \mathrm{I}, 653$
879	328,002
1355	$325,374,625,245$
2406	$394,178,473,633,984$
852655	$>4.28 \times 10^{73}$

(Benjamin Chaffin, Intel, March 2010)
(A64228)
(A64227)

Jan Ritsema van Eck's Sequence

$0,0,1,0,2,0,2,2,1,6,0,5$, $0,2,6,5,4,0,5,3,0,3,2,9$, $0,4,9,3,6,14,0,6,3,5,15,0$, $5,3,5,2,17,0,6,11,0,3,8,0, \ldots$
$a(n)$: how far back did we last see $a(n-I)$? or 0 if $a(n-I)$ never appeared before.

Van Eck: Al8I39|

A181391 as a graph:

Pin plot of A181391

Scatterplot of $\log ($ A181391(n)+1)

Thm. (Van Eck) There are infinitely many zeros.

Proof: (i) If not, no new terms, so bounded. Let $M=$ max term.
Any block of length M determines the sequence.
Only M^M blocks of length M.
So a block repeats.
So sequence becomes periodic.
Period contains no 0's.

Van Eck: Al8I39|

Proof (ii). Suppose period has length p and starts at term r.

Therefore period really began at term r-I.
Therefore period began at start of sequence. But first term was 0 , contradiction.

Van Eck: Al8I39|

It seems that:

$\lim \sup a(n) / n=1$

Gaps between 0's roughly log_10 n

Every number eventually appears

Proofs are lacking!
Van Eck: Al8I39|

Conjecture:

There is no nontrivial cycle

(David Applegate: Only trivial cycles of length up through 14)

The new OEIS: oeis.org

- 206,500 sequences (20,000 in first year)
- Owned and maintained by OEIS Foundation (a 501 (c) 3 public charity)
- Need more editors to help
- Need more eyes searching for sequences
- Need help with "kiosk" for science museums
- Need help with "music"

