The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A003084 Related to number of digraphs. (Formerly M3993) 2

%I M3993 #25 Dec 26 2021 20:39:59

%S 1,5,40,801,46821,9185102,6163297995,14339791643249,

%T 117235455142196308,3412474003994007703605,

%U 357748249084029269153547905,136400554886800212073525651823742,190697966236731843091458826668123014367,984418987245772021436902193577676975221669509,18875177868521443706244256784212908480749407027875180

%N Related to number of digraphs.

%D F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 124, table 5.1.2, p*a_p

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%F Sum a(n) x^n / n = log (1 + Sum d(n) x^n ), where d(n) is # digraphs on n nodes (A000273).

%t Needs["Combinatorica`"]; d[n_] := GraphPolynomial[n, x, Directed] /. x -> 1; max = 12; se = Series[ Sum[ a[n]*x^n/n, {n, 1, max}] - Log[1 + Sum[ d[n]*x^n, {n, 1, max}]], {x, 0, max}]; sol = SolveAlways[ se == 0, x]; A003084 = Table[ a[n], {n, 1, max}] /. sol[[1]] (* _Jean-François Alcover_, Feb 01 2012, after formula *)

%t terms = 15;

%t permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];

%t edges[v_] := Sum[2*GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[v - 1];

%t d[n_] := (s = 0; Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]} ]; s/n!);

%t CoefficientList[Log[Sum[ d[n] x^n, {n, 0, terms + 1}]] + O[x]^(terms + 1), x] Range[0, terms] // Rest (* _Jean-François Alcover_, Aug 29 2019, after _Andrew Howroyd_ in A000273 *)

%K nonn

%O 1,2

%A _N. J. A. Sloane_

%E Corrected and extended by _Vladeta Jovovic_, Jan 09 2000

%E More terms from _Jean-François Alcover_, Aug 29 2019

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 12 11:52 EDT 2024. Contains 375851 sequences. (Running on oeis4.)