login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002869 Largest number in n-th row of triangle A019538.
(Formerly M1704 N0674)
4

%I M1704 N0674

%S 1,1,2,6,36,240,1800,16800,191520,2328480,30240000,479001600,

%T 8083152000,142702560000,2731586457600,59056027430400,

%U 1320663933388800,30575780537702400,783699448602470400,21234672840116736000,591499300737945600000

%N Largest number in n-th row of triangle A019538.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Reinhard Zumkeller and Danny Rorabaugh, <a href="/A002869/b002869.txt">Table of n, a(n) for n = 0..400</a> (first 251 terms from Reinhard Zumkeller)

%H Victor Meally, <a href="/A002868/a002868.pdf">Comparison of several sequences given in Motzkin's paper "Sorting numbers for cylinders...", letter to N. J. A. Sloane, N. D.</a>

%H T. S. Motzkin, <a href="/A000262/a000262.pdf">Sorting numbers for cylinders and other classification numbers</a>, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176. [Annotated, scanned copy]

%H OEIS Wiki, <a href="http://oeis.org/wiki/Sorting_numbers">Sorting numbers</a>

%p f := proc(n) local t1, k; t1 := 0; for k to n do if t1 < A019538(n, k) then t1 := A019538(n, k) fi; od; t1; end;

%t A019538[n_, k_] := k!*StirlingS2[n, k]; f[0] = 1; f[n_] := Module[{t1, k}, t1 = 0; For[k = 1, k <= n, k++, If[t1 < A019538[n, k], t1 = A019538[n, k]]]; t1]; Table[f[n], {n, 0, 20}] (* _Jean-Fran├žois Alcover_, Dec 26 2013, after Maple *)

%o (Haskell)

%o a002869 0 = 1

%o a002869 n = maximum $ a019538_row n

%o -- _Reinhard Zumkeller_, Dec 15 2013

%o (Sage) max([factorial(k)*stirling_number2(n,k) for k in range(1,n+1)]) # _Danny Rorabaugh_, Oct 10 2015

%Y Cf. A019538, A058583.

%Y A000670 gives sum of terms in n-th row.

%K nonn,nice,easy

%O 0,3

%A _N. J. A. Sloane_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 13 06:26 EST 2019. Contains 329968 sequences. (Running on oeis4.)