Winter Fruits

New Problems from OEIS

December 2016-January 2017

Neil J.A. Sloane

The OEIS Foundation, and Rutgers University

Experimental Mathematics Seminar Rutgers University, January 262017
[Several slides have been updated since the talk - Neil Sloane, Jan 30 20I7]

Outline

- Crop circles / What not to submit / pau
- Graphs of Chaotic Cousin of Hofstadter-Conway
- Richard Guy's 197I letter
- Fibonachos
- Fibonacci digital sums
- Carryless problems
- Tisdale's sieve
- Square permutations, square words
- Remy Sigrist's new recurrences
- Michael Nyvang's musical compositions based on OEIS

Dec 28 2016, Question in email:

What is the significance of $I I, I 2,14, I 8$?

Prime numbers?

The Windmill Hill crop circle, July 26, 2011
This elegant and massive display (over 400 feet in diameter) is composed of circles that ascend from small to large or descend from large to small. In the inner ring there are 11 circles followed by 12 circles. In the outer ring there are 14 circles followed by 18 .

Answer:
Sorry, I cannot help you

WHAT NOT TO SUBMIT

A-numbers of sequences contributed by [your name]

$$
\begin{aligned}
& \text { 271***, 275***, 275***, 275***, } \\
& \text { 276***, 276***, 276***, 276***, } \\
& \text { 276***, 276***, 278***, }
\end{aligned}
$$

Added immediately to OEIS Wiki page "Examples of What Not to Submit"
"NOGI" = Not of General Interest

The number pau

Comment on Al97723, Jan 8 2017:

Decimal expansion of $3 \mathrm{Pi} / 2=4.712388980384 \ldots$

Randall Munroe suggests the name pau as a compromise between pi and tau.

Permanent link to this comic: http://хксd.сом/1292/
Image URL (FOR hotlinking/Embedding): http://Imgs.xкcd.com/comics/pi_vs_tau.pNG

New Graphs of A55748

 Chaotic Cousin of
Hofstadter-Conway

A400I (the $\$ 10,000$ sequence):

$$
\mathrm{a}(\mathrm{n})=\mathrm{a}(\mathrm{a}(\mathrm{n}-\mathrm{I}))+\mathrm{a}(\mathrm{n}-\mathrm{a}(\mathrm{n}-\mathrm{I}))
$$

A55748: $a(n)=a(a(n-I))+a(n-a(n-2)-I)$

From Martin Møller Skarbiniks Pedersen

Richard Guy's letter June 24 1971

(I5 sequences, many still need extending, 46 years later)

One of many letters from Richard Guy

June 24 I97I

AN AIR LETTER SHOULD NOT CONTAIN ANY ENCLOSURE
IF IT DOES IT WILL BE SURCHARGED
OR SENT BY ORDINARY MAIL.
f a dress from 4-9: Dept of hint. Royal Holloway College,
Enclefield Gean, furry, England from July $12-22, \%$ UNIVERSITY OF OXFORD RLGrahau, Bell Labs., 600 Mquutaui Are, Hurray Hill, NJ, 07974 , US .A. from Holy 23 ow wards, Ip of hath., Statistics \& Computing Deience, the univ of Calgary, Calgary 44, Telephone 086554295 Allegra, Canada. 4032845202 June $24 \begin{gathered}24-29 \mathrm{St} \text { Giles } \\ \text { Oxford } 0 \times 1 \text { LB }\end{gathered}$
Lear Neil, Some sequences I have come across recently which you may not have (until recently I had access to a pt edition; now no access; in Calgary 9 have editions $1,284$.

I	1	1	2	2	11	11	50	$A 279197$			eg		
J	0	0	0	2	7	52		$A 279198$					
K	1	1	2	6	25	115		$A 202705$					
L	0	1	3	9	30	117	512	A	$A 79199$		(12)		
M	1	2	5	15	55	232	$A 104$	429	(9)		$15)$		
N	0	0	1	1	2	2	3	7	15	12	30	8	32
162	21												
P	0	0	1	2	4	6	3	10	25	12	42	8	40
202	21												

$$
\begin{aligned}
& \text { eg. } s\left(43^{n} 2^{m}\right)= \\
& (n+1)\left\{\binom{m+2 n+4}{n+2}-\binom{m+2 n+4}{n+1}\right\}
\end{aligned}
$$

$\stackrel{P}{P} / A$ \# partitions of 1 into $\mu+1$ parts of size $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots$ $\sqrt{ } B \ldots \ldots$ parts $\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \frac{15}{16}, \ldots$
§. (C)... now-isentropic briary tees. (Helen Alierson, JHComay, te at Cambridge. They are tooted tees with 2 branches at each stage and if A, B, C, D (v. fig. .t.) are further growths, then one treats (A g ${ }^{\prime} C D$) as equivalent to $(A C)(B D)$ - otherwise one distriguishes left \& right. \# of equiv. clans of such tres. - \# of polynomials $P(x, y)$ with non-neg. niteger colts witt $P(x, y) \geq 1$, mod $x+y-1$ and with $P(1,1)=n$. (almost the same as C !)
(5) \# of distuct values of $2^{2^{2}}$ witt $n 2^{\prime}$ and the operation performed ii any order (not neeenarily") (have sesker for a copy of note by Lelfrigge \& self to be neut to you)
(-) \# of sequences of "refinements" of partitions of n into $1^{n} \mathrm{eg}$. egg. u te fig. $I 4$ district paths of length $x-1=4$ from 5 to $1, s_{0} s(5)=4$. Muon 89 are writing a paper on this. F for $\left.F:\left[\frac{1}{2} n\right]^{2}\right)^{2}\left[\frac{1}{2} n\right]^{m-\epsilon}$ where $m(m+1) \leqslant n<(n+1)(m+2), \varepsilon=1$ or 2 aec. as x is odd of even - G au upper bound for F: $2.5 \ldots . . \frac{1}{(n-1)}(4+2)$ and the number in the devon are 1 lest than Δ ar \#s.
(H) Total $\neq \delta$ p att, from n towards 1^{n} of all lenglts $0,1,2, \ldots, n-1$. The coefts. ri the miequality $A(n) \geqslant s(n-1)+2 s(n-2)+3 s(n-3)+7 s(n-4)+15 s(n-5)+\cdots$ used to obtain a lower bound.
I 2 the generalization of Sedla'cel's compecture (loges B. Eggleton \& self) (copy of pt paper sent), the it of "self-conjugate uireparable" solutions of $x+y=2 z$ (uiteget, disjoint triples from $\{1,2,3, \ldots, 3 n\}$)
J \# of pairs of "conj. nisep" ", eg. $243.264 \quad \mathrm{~K}=I+2 J$, \# of "mise" solutions

$M=K+L$, \# of solutions.
(N) \# of solutions of $x+y=z$ chosen from $\{1,2, \ldots x\} \begin{array}{ll}24 & 1158 \\ 9 & 11102 \\ 121413\end{array}$

Monday, January 30, 17

Sequences C and D from Guy's letter need more terms and clearer definition

C: A2844
Number of non-isentropic binary rooted trees with n nodes.

$$
1,1,2,5,13,36,102,296,871,2599
$$

Studied by Helen Alderson, J. H. Conway, etc. at Cambridge. These are rooted trees with two branches at each stage and if A, B, C, D (see drawing in letter) are further growths, then one treats ($A B$)(CD) as equivalent to $(A C)(B D)$ - otherwise one distinguishes left and right. The sequence gives the number of equivalence classes of such trees.
D: A279196
December 152016
Number of polynomials $\mathrm{P}(\mathrm{x}, \mathrm{y})$ with non-negative integer coefficients such that

$$
\begin{aligned}
& P(x, y)==I \bmod x+y-I \text { and } P(I, I)=n . \\
& 1,1,2,5,13,36,102,295,864
\end{aligned}
$$

(both have offset I)
Postscript, Jan 28 2017: Doron Zeilberger informs me he has a Maple program that implements the definition of sequence C , and he is extending the sequence.

See A002844 for details.

Guy's sequences I, J, K, L, M also need more terms

M: A202705
Number of irreducible ways to split I...3n into n 3-term arithmetic progressions
$1,1,2,6,25,115,649,4046,29674, \ldots$
Offset I. Only 14 terms known, extended by Alois Heinz in 2011.
3 papers by Richard Guy, 197I-1976
Calgary thesis by Richard Nowakowski I975, not online
Are there any applications here of modern "additive combinatorics" (Gowers et al.)?

Definition not clear, need better examples, formulas?
I: A279|97
Number of self-conjugate inseparable solutions of $X+Y=2 Z$ (integer, disjoint triples from $\{1,2,3, \ldots, 3 n\}$).

$$
1,1,2,2,11,11,50
$$

Example of solutions $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ for $\mathrm{n}=5$:
2,4,3
5,7,6
1,15,8
9,11,10
12,14,13

Fibonachos

and generalizations

Fibonachos Numbers

Based on Reddit page created by "Teblefer"
A28052I, contributed by Peter Kagey, Jan 42017

Fibonachos, cont. Start with pile of n nachos.
Successively remove $I, I, 2,3,5,8, \ldots, F _i$ until number left is $<F_{-}\{i+1\}$

Then successively remove $I, I, 2,3,5,8, \ldots, F_{_} \mathfrak{j}$ until number left is < F_\{j+I\}

Repeat until no nachos left. a(n) = number of stages.
$n=23$ subtract leaves

1	22
1	21
2	19
3	16
5	11
8	3
1	2
1	1
1	0

$$
1,1,2,1,2,2,1,2,2,3,2,1,2,2,3, \ldots
$$

A28052

3 stages, so $a(23)=3$

Fibonachos, cont.
A280523: When do we first see n ? $1,3,10,30,84,227,603,1589,4172,10936, \ldots$, 20365011049 (25 terms known)

Conjecture: This is bisection of A2I5004:

$$
\begin{gathered}
c(0)=c(I)=I ; \\
c(n)=c(n-I)+c(n-2)+\text { floor }(\mathrm{n} / 2) \\
\text { Why? }
\end{gathered}
$$

Postscript: Only a few hours after I gave this talk, Nathan Fox pointed out that the Reddit web page also mentioned a simpler formula, namely

$$
c(n)=\operatorname{Fib}(n+3)-\text { floor }((n+3) / 2)
$$

Using this Nathan was able to prove the conjecture.
See A280523 for details.

Fibonachos, cont.

Generalize: Nachos based on S,

 where $S=I, \ldots$ is a sequence of positive numbers.| S | a(n) | records at |
| :---: | :---: | :---: |
| Fib. | A28052I | A280523 |
| n | A057945 | A006893 |
| $n(n+1) / 2$ | A28I367 | A28I368 |
| $2^{\wedge} n$ | A10066I | A000325 |
| $n^{\wedge} 2$ | A280053 | A280054 |

No. of triangular nos. needed to represent n by greedy alg.
(*) Error in talk: see below
$2^{\wedge} n-n$
New
$\left.\mathbf{(}^{*}\right)$ In the talk I said the nachos sequence based on triangular numbers was AI 04246 and was conjectured to be unbounded. This was nonsense, as Matthew Russell pointed out.

Fibonachos, cont.

A28053 and A280054

Nachos based on Squares

$\mathrm{n}=36$ subtract leaves

1	35
4	31
9	22
16	6
1	5
4	1
1	0

3 stages, so a(36)=3

Smallest number with nachos value n

22
33
44
59
623
753
$\begin{array}{ll}8 & 193\end{array}$
91012
1011428
11414069
1289236803
13281079668014
1449673575524946259
153690344289594918623401179
162363083530686659576336864121757607550
171210869542685904980187672572977511794639836071291151196
18444145001054590209463353573888030904503184365398155859130743499369619675545966466
24 terms from Lars Blomberg

What are these numbers?

Digital sums of Fibonacci numbers

A67182

Smallest Fibonacci number with digital sum n

Dec 26 2016: A067182 was in a deplorable state:
$\mathrm{a}(\mathrm{n})=$ smallest Fib. no. with digital sum n , or -1 if none exists
$0,1,2,3,13,5,-1) 34,8,144,55,(-1),(-1,4181,(-1),-1,89, \ldots$were conjectures!

Me to Seq. Fans.: No progress since 2002 !
First reply: Not gonna happen!
Me: F_n mod 100 has period 300 , might tell us something Joseph Myers, Don Reble (indep.):You were close! Look at F_n mod 9999, period 600, no value is $6 \bmod 9999$, so $a(6)=-1$ is true.

But all other-1entries are still conjectures.

A222296
 Digital sums in base 2

Row n:All Fibonacci numbers with Hamming weight n :
$\{0\}$,
\{I, I, 2, 8\}, (Carmichael's Th.)
$\{3,5,34,144\}$, (Elkies)
$\{|3,2|, \ldots\}$. Conj. Full!
It is conjectured that the previous $(\mathrm{n}=3)$ row is complete, and that the subsequent rows are:
$\{89,610,2584\}$,
$\{55,233,418 \mathrm{I}\}$,
$\{377,10946,46368,75025\}$,
\{1597\},

Charles Greathouse (Q) and Noam D. Elkies (replies) on MathOverflow, 2014:
The Hamming weight $w(n)$ is the number of 1 s in n when written in binary. Is there some effective bound on Fibonacci numbers F_{n} with $w\left(F_{n}\right) \leq x$ for a given x ?

Since you specify "effective" in the question I guess you know this already, but just in case: there are only finitely many such n, because $2^{e_{1}}+\cdots+2^{e_{x}}=\left(\varphi^{n}-\varphi^{-n}\right) / \sqrt{5}$ is an S-unit equation in $x+2$ variables over $\mathbf{Q}(\sqrt{5})$; but in general no effective proof is known for such a result (though the number of solutions of $w\left(F_{n}\right) \leq x$ may be effectively bounded). - Noam D. Elkies Mar 2 '14 at 6:28

A222296

Theorem：
Noam D．Elkies， Mar 22014

3，5，34， 144 are the only Fib． nos．with wt 2.

The case $x=2$ is still tractable．If $F_{n}=2^{e}+2^{f}$ with $e<f$ then $e<5$ ，else $F_{n} \equiv 0 \bmod 2^{5}$ ， which happens iff $n \equiv 0 \bmod 24$ ，and then $7\left|21=F_{8}\right| F_{24} \mid F_{n}$ ，which is impossible because $2^{e}+2^{f}$ is never a multiple of 7 ．So we have only a few candidates for e ，and we can deal with each of them separately，possibly even by elementary means，to show that $(n, e, f)=(12,4,7)$ is the last solution．

〈EDIT 〉 Here＇s such an elementary proof．For each e（other than the trivial $e=2$ ），we choose some $f_{0}>e$ ，try each f with $e<f_{0}<f$ ，and then once $f \geq f_{0}$ we use the condition $F_{n}=2^{e}+2^{f} \equiv 2^{e} \bmod 2^{f}$ to get a congruence condition on n ，and then reach a contradiction by considering F_{n} modulo some odd prime（usually 3 ，but with one much larger exception）．
$e=0$ ：We take $f_{0}=4$ ．Trying $f=1$ and $f=2$ yields the Fibonacci numbers $F_{4}=3$ and $F_{5}=5$ ，and $f=3$ yields the non－Fibonacci number 9 ．Once $f \geq 4$ we have $F_{n} \equiv 1 \bmod 16$ ． But $F_{n} \bmod 16$ is periodic with period 24 ，and it turns out that the remainder is 1 only for $n \equiv 1,2,23 \bmod 24$ ．But $F_{n} \bmod 3$ has period 8 ，which is a factor of 24 ；and $F_{1}=F_{2}=F_{-1}=1$ ．We deduce $F_{n} \equiv 1 \mathrm{mod} 3$ ．Hence $2^{f} \equiv 0 \mathrm{mod} 3$ ，which is impossible．
$e=1$ ：The Fibonacci numbers F_{n} congruent to $2 \bmod 4$ are those with $n \equiv 3 \bmod 6$ ，and these always turn out to be $2 \bmod 32$ ．Thus $f \geq 5$ ，and $f=5$ yields the Fibonacci number $34=F_{9}$ ．
We claim that this is the only possibility，using $f_{0}=6$ ．Once $f \geq 6$ we have $F_{n} \equiv 2 \bmod 64$ ，and then $n \equiv \pm 3 \bmod 24$ ．But（again thanks to 8 －periodicity $\bmod 3$ ）this implies $F_{n} \equiv 2 \bmod 3$ ，so once more we reach a contradiction from the congruence $2^{f} \equiv 0 \bmod 3$ ．
$e=2$ ：impossible because F_{n} is never $2 \bmod 4$ ．
$e=3$ ：We take $f_{0}=5$ ．Since $2^{3}+2^{4}=24$ is not a Fibonacci number，we may assume $f \geq 5$ ， and then $F_{n} \equiv 8 \bmod 32$ ．This is equivalent to $n \equiv 6 \bmod 24$ ，which again yields a contradiction $\bmod 3$ since $2^{f}=F_{n}-2^{e}$ would have to be a multiple of 3 ．
$e=4$ ：This is the hardest case：because $f=7$ yields $144=F_{12}$ ，it is not enough to use congruences that can be deduced from $F_{n} \equiv 2 \bmod 2^{7}$ ，and we must take $f_{0}>7$ ．It turns out that $f_{0}=9$ works．Then $f=5,6,8$ yield the non－Fibonacci $48,80,272$ ．Once $f \geq 9$ we must have $F_{n} \equiv 16 \bmod 2^{9}$ ．Now $F_{n} \bmod 2^{9}$ has period 768 ，but the condition $F_{n} \equiv 16 \bmod 2^{9}$ determines $n \bmod 384$（half of 768 ），and we compute $n \equiv-84 \bmod 384$ ．Now $n \bmod 384$ determines F_{n} modulo the prime 4481 （the period is 128 ），and we find $F_{n} \equiv 2284 \bmod 4481$ ， whence $2^{f}=F_{n}-2^{e} \equiv 2284-16=2268 \bmod 4481$ ．But this is impossible because 2 is a fourth power（even an 8 th power）mod 4481，and 2268 is not．

〈 IEDIT＞
But I doubt that one can prove that such a technique can work for all $x \ldots$

Carryless Stuff

(No caries)

Recall!

Carryless Arithmetic

 Dedicated to Martin Gardner
No carries in the Carryless Islands!

(former penal colony - prisons have excellent dental care)

$$
\begin{aligned}
& 6+7=3 \\
& 6 \times 7=2
\end{aligned}
$$

785	643
+376	$\times 59$

$=051$	467
	0050

	$=417$

I'M JUST HERE FOR THE DENTAL

"I'm just here for the dental."

Recall!

What are the carryless primes?

First try fails!
Any number is divisible by 9 , e.g. $9 \times 99=1$, so no primes exist

Better: Note that $3 \times 7=1,9 \times 9=1$
So I, 3, 7, 9 are UNITS, and don't count.
p is prime if only factorization is $p=u \times p$, where u is $I, 3,7,9$

Carryless primes are $2 \mathrm{I}, 23,25,27,29,4 \mathrm{I}, 43,45, \ldots$
Sequence Al 69887 in OEIS
(Be careful: $2=4 \times 5005555503$!)

New
$a(n)=$ smallest s.t. $a(I)+\ldots+a(n)$ has no carries. A278742

Rémy Sigrist Nov 272016

BASE 9

Sigrist's conjecture A278743,A28005I,A280052
For any base $1, \exists d, k_{0}, m$ such that

$$
a(k+d)=a(k) \cdot b^{m} \quad \wp_{n} k>k_{0}
$$ order

b	d	k_{0}	m			
2	1	0	1			
3	3	0	2			
4	2	0	1	$A 278743$	$:$	d
5	5	0	2	$A 280051$	$:$	k_{0}
6	9	0	3	$A 280052: m$		
7	3	0	1			
8	7	0	2			
9	4	3	1			
10	17	0	4			
11	4	0	1			
12	9	0	2			

A278743 From Sigrist's conjecture:

Order of recurrence for greedy carryless sequence in base b
What is going on? scatterplot of A278743(n)

Order d

Base b

The Tisdale Sieve

Al4I436

The Tisdale Sieve Al 41436

Dec 25 2016: Editor J.E.S. said: AI 4I436 is a mess!
Me:I will edit it!
And discovered a diamond.....

Let

$$
\begin{aligned}
& P=\text { primes } 2,3,5,7,11,13, \ldots \\
& N=\text { nonprimes } 1,4,6,8,9,10,12, \ldots
\end{aligned}
$$

Define ∞ at of sequences $S_{1}, S_{2}, S_{3}, \cdots$ by
$S_{i}(1)=$ smallest number not yet used
$S_{i}(j+1)=$ either $P\left(S_{i}(j)\right)$ or $N\left(S_{i}(j)\right)$ so that
primes and nongrimes alternate in S_{i}.

$$
\begin{aligned}
& S_{2}=3,6,13,21 \text {, } \\
& S_{3}=5,9,23, \\
& \text { A } 141436=1,3,5,8,10,11, \ldots
\end{aligned}
$$

Conjecture (R,J. Mather): This is union of

$$
\begin{aligned}
A 6450 & =p \neq P(N) \quad \\
A 102615 & =n \& N(P) \quad
\end{aligned} \quad \begin{aligned}
& =N(N)
\end{aligned}
$$

Proof of Mather's conjecture by David Applegate
Lemma Given $f: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$with $f(k)>$ b for all k Define $S_{1}, S_{2}, S_{3}, \cdots$ by:
$S_{i}(1)=$ smallest number not yet used

$$
S_{i}(j+1)=f\left(S_{i}(j)\right)
$$

Then $S_{1}(1), S_{2}(1), S_{3}(1), \ldots=k \& \operatorname{Im}(f)$.
Proof If $k \& \operatorname{Im}(f)$ then $k \neq s_{i}(j), j>1$
$\therefore k=S_{i}(1)$ for some i
conversely: If $k \in \ln (f)$, then $\exists m$ with $f(m)=k$.

- if $m \in I_{m}(f)$ then by IH $m=S_{i}(j), j>1$
so $k=S_{i}(j+1)$
- If $m \neq I_{m}(f)$ then $m=S_{i}(1), k=S_{i}(2)$.

Apply Lemma with

$$
f(k)=P(k) \text { if } k \in N, \quad N(k) \text { if } k \in P \text {. }
$$

Square Permutations and
 Square Binary Words

Number of Squase Permutations
A279200 Dec. 152016
tased on S. Giraudo artio 2016
Samuele Giraudo and Stephane Vialette

$$
\begin{gathered}
\sigma \in \&_{2 n} \text { s.f. } \sigma=\pi 山 \pi, \pi \in \beta_{n} \\
\omega_{1}=\text { imperfect shuffle } \\
(n \geqslant 0) \quad 1,2,20,504,21032,1293418 .
\end{gathered}
$$

Number of Square Binary Words of Lengta $2 n$

$$
u \in\{0,1\}^{2 n} \text { s.t. } u=v 山 v, v \in\{0,1\}^{n}
$$

$$
(n \geqslant 0) \quad 1,2,6,22,82,320,1268, \ldots
$$

$$
\text { Known for } n \leqslant 15 \text { (Joerg Arndt) }
$$

No theory, formulag, ...

Remy Sigrist's New Sequences

A280864, A280866

Rémy Sigrist Two new sequences $\operatorname{Jan} 92017$
A280864 Distinct, earliest; for any prime p any run of consecutive multiples of p has length 2.

$$
\begin{aligned}
& \begin{array}{llllllllllllll}
1 & 2 & 4 & 3 & 6 & 8 & 5 & 10 & 12 & 9 & 7 & 14 & 16 & 11 \\
\hline- & 2 & -3 & 2 & - & 5 & 2 & 3 & - & 7 & 2 & -
\end{array}
\end{aligned}
$$

"FREE": NEXT TERM is SmALLEST MISSING NO.
A 280866 Same except ... has length $\geqslant 2$.
(They agree for 41 terms)

A 280866
Th: This is a perm of natural numbs
Prof 1. clearly infinite
2. Any m is either in sequence, or $\exists n_{0}$ sit.

$$
n>n_{0} \Rightarrow a(n)>m
$$

3. For any prime $p_{3} \exists$ term divisible by p
(If ϕ never appears, then no prime $>p$ can appear.
\therefore all terms are products of $235 \ldots p-1$ Go out past p !. Then candidates for next term are p and p. \{any protest I distinct primes $<p\}$ o Hheseare < p ! so will appear next)
4. Iss For a pine p, let a (n) be
fort multiple op. Either $a(n)=p$, \& $a(n-1)$ was fee, or $a(n)=k p, a(n+1)=p$ and is fee.
\therefore Oo many fee term
\vdots every nuder appeas

New A28|488 with key-words "look" and "hear"

A28I488 from Andrey Zabolotskiy January 222017

$$
\begin{gathered}
a(n)=-\sum_{\substack{d \mid n-2) \\
1 \leq d \leq n-1}} a(d) \\
1,-1,-1,0,0,0,-1,1,0,-1,0, \ldots
\end{gathered}
$$

A28I488

Logarithmic scatterplot of |A281488(n)|

Logarithmic scatterplot of A281488(n)

Two compositions from Michael Nyvang (Copenhagen) based on OEIS

sequences

- surreal-cantata--final.mp3
- A276207-and-neighbors-music-forNJ.mp3

Like these problems?

Become a volunteer OEIS editor!

Contact Neil Sloane, njasloane@gmail.com

