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THE ENUMERATION OF GENERALIZED DOUBLE STOCHASTI
NONNEGATIVE INTEGER SQUARE MATRICES* ?((C%C?

D. M. JACKSONt anp G. H. J. VAN REES] n . P
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Abstract. The problem of enumerating generalized double stochastic integer square matrices is
considered. The superposition theorem is used in conjunction with Schur functions to obtain the

counting series for the 5 x 5and 6 x 6 cases. ﬁ, 2’<'- q i‘#‘?ff‘ 7
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1. Introduction. Let H,(n) be the number of m x m matrices over
N = {0,1,2, ---} with line sum ne N. The purpose of this paper is to give the
ordinary generating functions ®4(t), ®4(t) for the sequences {Hs(n)} and {H(n)}
respectively with the anticipation that these additional sequences may be of service
in determining the relationship among the ®(t). The sequences for {H,(n)},
{H ,(n)} have been given by Sloane [1], together with references to the papers in
which they first appear. The theorems supporting the computational method are
given in § 2, while § 3 contains examples and a special case. The initial segments
of sequences {H(n)} and the generating functions ®t) are tabulated in §4 for
i = 2,3,4 (for completeness) and for i = 5, 6. Use has been made of Theorem 2,
which is amenable to automatic computation.
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2. Main theorem. The following result permits the computation of H,(n)
by polynomial interpolation. The symmetry relation reduces the number of
values of n at which H,(n) need be computed for interpolatory purposes.

CONJECTURE (Anand-Dumir-Gupta [2]).

(i) H,(n) is a polynomial in n of degree (m — 1)2.

(ii) Hpu(n) = (= 1" 'H, (—m—n).

Proof. See Stanley [3].

Values of H,,(n) may be computed according to the following theorem.

THEOREM 1. H {n) = N(h' * h)"), where

(1) h, is the cycle index polynomial in the indeterminates x, --- x, for the

symmetric group S,;
(i) if A(x), B(x) are two multivariate polynomials in x, - - - x, such that
Ax) =Y ax’,
)
B(x) = ) bix',
@)

e . cits

where the summation is over all partitions (i) = 112 ... n'» of n, then the
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inner product A * B is defined by

A(x)* B(x) = Y a;big(i)x’,
()
where g(i) = (1712 -+ a™)iy lip! - iy 1

(iii) N(A(X)) = A=t

Proof. See Read [4].

The use of Theorem 1 is illustrated by Example 1 of § 3.

Since k™ is a symmetric function, the computation of H,(n) may be simplified
by expressing hy as a linear combination of Schur functions and by using the
orthogonality relation for Schur functions.

Let {4} be the Schur function associated with the partition (4) of n. Then
h, = {n} gives the representation of the cycle index polynomial for S, in terms of
Schur functions.

LEMMA 1. b = Zm a;{A}, where the summation is over all partitions of mn.

Proof. h* is a symmetric function.

LemMa 2 (Orthogonality relation).

N({A} * {u}) =

Proof. See Littlewood [5].

THEOREM 2. H,(n) = Z;) %3.

Proof. The proof is direct from Theorem 1 and Lemmas 1 and 2.

The remaining problem of expressing a symmetric polynomial as a linear
combination of Schur functions may be carried out by a method given by Little-
wood [5].

Let {1} be the Schur function corresponding to a partition (4) of r. To evaluate
{4} {n}, construct the Young diagram for () using ““asterisks”. Add to this diagram
n “dots” in all possible ways, subject to the conditions

(i) resulting diagram is a Young diagram in the two symbols,

(i) no two “dots” lie in the same vertical line.

The expansion of {A}{n} is the sum of the Schur functions corresponding to the
partitions of r + n generated in this manner. Example 2 of the following section
illustrates this procedure.

{1 if(4) = (W),

0 otherwise.

3. Examples.

Example 1. Theorem 1 may be usefully employed for small values of n, for
which the exponentiation of the polynomial h, is readily constructed. We shall
compute H,,(2). Now h; = 1(x? + x,),thecycleindex polynomial for S,. Therefore

1 1
Ho(2) = N(Wg *13) = N(—(x% )" axd + xz)'")

2"1
2
_ly ('") 120202(2 ) 1(i,)!
4" 20 \h
iy tipy=m
mH? & 27 (20
= L =iyl
ih=0 1)\ I
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This is in agreement with known results.
Example 2. We shall compute H ;(2) using Theorem 2.
We shall represent {u} by [G(u)], where G(u) is the Young diagram for (u),
and write {u} = [G(w)].
Then {2} = [**], so
5 * %k . * X
P N R S P e
whence
(212 = {4} + {3, 1} + {2%}.
Finally
{217 = {2}2{2} = {4}{2} + (3, 1}{2} + {2°}{2}
= {6} +2{5,1} + 3{4,2} + 2{3,2,1} + {4,172} + {3%} + {2°}
Thus, from Theorem (2),
Hy2) = N{2P?* 2}) =12 + 22 + 32 + 22 + 12 + 12 + 12 = 21.

4. Tabulation of {H,(n)}, ®,(r). The generating function for {H,(n)} is
given by w
D,(t) = Y t"H,(n)
n=0

_ Sml?)
- (1 . t)(m*1]2+1 ’
TaBLE |

Tabulation of a'™ for m = 2,3,4,5,6

m 2 3 4 5 6

i0 1 1 1 1 1
1 | 14 103 694
2 1 87 4306 184015
3 148 63110 15902580
4 87 388615 567296265
5 14 1115068 9816969306
6 1 1575669 91422589980
7 1115068 490333468494
8 388615 1583419977390
9 63110 3166404385990
10 4306 3982599815746
11 103 3166404385990
12 1 1583419977390
13 490333468494
14 g 91422589980
15 C(T L“_q' ?) 9816969306
16 v 567296265
17 15902580
18 184015
19 694

20 1
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where f,(1) = Y(m m 2 a™t' and all a{™ are integers.
Note that
fult) = 1IN
is a consequence of
H,(n) = (=" 'H,(—n—m).
;[“he va}ues of a™ are given in Table 1, while Table 2 contains the initial segments
H,(n);. ”

2317

TABLE 2
Initial segments of {H,(n)} for m = 2,3,4.5, 6

—
m H,(n) 7/ /
- pad
,2,3,4,5,6,7,8,9,10, 11,12 / \'é
81541, 2309384, 5045326 ) é

2 1
3 1, 6,21, 55, 120, 231, 406, 66\1035, 1540, 2211 :
4 1, 24, 282, 2008, 10147, 40176, 132724, 381424,
5 1, 120, 6210, 153040, 2224955, 22069251, 164176640, 976395820, 4855258305,
2085679285, 79315936751 ol —
6 1, 720, 202410, 20933840, 1047649905, 30767936616, 602351808741, 8575979362560, Q_g?

94459713879600, 842286559093240, 6292583664553881 ~

M 159 H‘;(--Lf ?(FB 7
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