Richard Guy and the Encyclopedia of Integer Sequences: A Fifty-Year Friendship

Neil J. A. Sloane

Visiting Scholar, Rutgers; OEIS Foundation, Highland Park

Conference "Celebrating Richard Guy" University of Calgary, October 2, 2020

Copyright N. J. A. Sloane, 2020

More Than 50 Years

- 1964: Start of integer sequence database to help with thesis
- 1967 onwards: many contributions from RKG
- 1973: Handbook of Integer Sequences, 2372 seqs
- 1988: RKG: Strong Law of Small Numbers
- 1995: (with Simon Plouffe) Encyclopedia of Integer Sequences, 5K seqs
- 1996: Online! OEIS = On-Line Encyc. of Int. Seqs., 10K seqs
- 2004: 100K E-party
- 2009: The OEIS Foundation Inc., Trustees: David Applegate, Ray Chandler, Russ Cox, Susanna Cuyler, Ron Graham, Richard Guy, David Johnson, Marc LeBrun, Tony Noe, Simon Plouffe, self.
- 2010: OEIS moved off my AT\&T home page to commercial hosting site
- 2020: 337000 entries, 80 editors, 200 updates/day, half-million queries/day, 9000 citation in the literature

f no conget at Oxford, now at Combrige, but only untie gely 3. adress from fuly 4-9: Bept, of huatt. Royal Holloway Ellege, Englefield Gteen, funey, Euglavid From July $12-22$, \% UNIVERSITY OF OXFORD RLGrahaun, Bell Labo., Goo Auruitani Are, suentay Kill, NJ, 07974 USA. From foly 23 owwardo, Deph of hait.,

Mathematical Institute
Shatistics \& Computing frience, the Univ, of Calgaiy, Calgary 44,
Telephone 086554295 Allepta, Canada. $403284 \mathrm{~S}_{2} 02$ recently I had aceen to a pt edition; now no accers; wi Calgary 9 have eitions 1,2 \& 4.

\$ A \# of partitions of 1 into $\mu+1$ parts of size $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots$
$\approx A B-h$ parts $\frac{1}{2}, \frac{3}{4}, \frac{7}{5}, \frac{15}{16}, \ldots$
5. (C)... "now-inentropic buiary trees" (Helen Alieron, JHConay, etc at Camb with 2 branches at each stage and if A, B, C, D (r. fig. th.) are further gro equivalent to (AC)(BD) - otherwise one distinguishes left \& right. \# of D \# of polynomials $P(x, y)$ with non-neg. witeger caffs with $P(c, y) \equiv 1$, moi (alnuot the Name as e !)

* (5) \# of distuct values of $2^{2^{2}}$ with $n 2^{\prime}$ s and the operations performed 1 (have esker for a copy of note by Lelfridge \& self to he sent to you) (-) \# of sequences of "refinements" of partitions of n ito $1^{n} \mathrm{eg}$. eg. wi the fig. 74 district pats of length $x-1=4$ from 5 ts $1,20 s(5)=$ a paper on this.
- G an upper bound for $F: \frac{\left(\left[\frac{1}{2} n\right]!\right)^{2}\left[\frac{1}{2} n\right]^{m-\epsilon}}{2.5 \ldots \ldots(n-1)(n+2)}$ where $m(n+1) \leqslant n<(m+1)(m+2)$, n,
(H) Total \neq of path, from n towards 1^{n} of all lengits $0,1,2, \ldots, n-1$. The $A(n) \geqslant s(n-1)+2 s(n-2)+3 A(n-3)+7 s(n-4)+15 s(n-5)+\cdots$ used to obtain I In the generalization of Sedlacét's conjecture (loges B. Eggleton \& self) (copy 0 "self-conjugate uiseparable" solutions of $x+y=2 z$ (riteget, Disjoint biples tron ई J \# of pairs of "conj. nisep" ", eg. L \# of "separable" solutions, eg $\frac{132}{486}$
\(\left.\begin{array}{l}243

576

1158

91311

101412\end{array}\right)=\)| 264 |
| :--- |
| 375 |
| 1158 |
| 9210 |
| 121413 |

$K=I+2 J$, \# of "wised" sole
$M=K+L$, \# of solutions.
(N) \# of solutions of $x+y=z$ a
counting only " which indue

Am. Math. Monthly 1988

The Strong Law of Small Numbers

Richard K. Guy
Department of Mathematics and Statistics. The University of Calgary, Calgary, Alberta, Canada T2N IN 4

This article is in two parts, the first of which is a do-it-yourself operation, in which I'll show you 35 examples of patterns that seem to appear when we look at several small values of n, in various problems whose answers depend on n. The question will be, in each case: do you think that the pattern persists for all n, or do you believe that it is a figment of the smallness of the values of n that are worked out in the examples?

Caution: examples of both kinds appear; they are not all figments!
In the second part I'll give you the answers, insofar as I know them, together with references.

Try keeping a scorecard: for each example, enter your opinion as to whether the observed pattern is known to continue, known not to continue, or not known at all.

This first part contains no information; rather it contains a good deal of disinformation. The first part contains one theorem:

> You can't tell by looking.

It has wide application, outside mathematics as well as within. It will be proved by intimidation.

Here are some well-known examples to get you started.
Example 1. The numbers $2^{2^{2}}+1=3.2^{2^{1}}+1=5,2^{2^{2}}+1=17,2^{2^{3}}+1=257$, , 215 $2^{2^{2}}+1=65537$, are primes.

Example 2. The number $2^{n}-1$ can't be prime unless n is prime, but $2^{2}-1=3$, $2^{3}-1=7,2^{5}-1=31,2^{7}-1=127$, are primes.

Example 11. When you use Euclid's method to show that there are unboundedly

$$
\begin{gathered}
2+1=3 \\
(2 \times 3)+1=7 \\
(2 \times 3 \times 5)+1=31 \\
(2 \times 3 \times 5 \times 7)+1=211 \\
(2 \times 3 \times 5 \times 7 \times 11)+1=2311
\end{gathered}
$$

you don't always get primes:

$$
\begin{aligned}
(2 \times 3 \times 5 \times 7 \times 11 \times 13)+1 & =30031=59 \times 509 \\
(2 \times 3 \times 5 \times 7 \times 11 \times 13 \times 17)+1 & =510511=19 \times 97 \times 277 \\
(2 \times 3 \times 5 \times 7 \times 11 \times 13 \times 17 \times 19)+1 & =9699691=347 \times 27953
\end{aligned}
$$

but if you go to the next prime, its difference from the product is always a prime

$$
45235
$$

$$
\begin{gathered}
5-2=3 \\
11-(2 \times 3)=5 \\
37-(2 \times 3 \times 5)=7 \\
223-(2 \times 3 \times 5 \times 7)=13 \\
2333-(2 \times 3 \times 5 \times 7 \times 11)=23 \\
30047-(2 \times 3 \times 5 \times 7 \times 11 \times 13)=17 \\
510529-(2 \times 3 \times 5 \times 7 \times 11 \times 13 \times 17)=19 \\
9699713-(2 \times 3 \times 5 \times 7 \times 11 \times 13 \times 17 \times 19)=23
\end{gathered}
$$

11. R. F. Fortune conjectured that these differences are always prime: see $[8],[9]$
and A 2 in [12]. The next few are $37,61,67,61,71,47,107,59,61,109,89,103,79$. There's a high probability that the conjecture is true, because the difference can't be divisible by any of the first k primes, so the smallest composite candidate for $P=\prod p_{k}$ is p_{k+1}^{2}, which is approximately $(k \ln k)^{2}$ in size. The product of the first k primes is about e^{k} : to find a counter example we need a gap in the primes near N of size at least $(\ln N \ln \ln N)^{2}$. Such gaps are believed not to exist, but it's beyond our present means to prove this.

Fortunate numbers: least $\mathrm{m}>1$ such that $\mathrm{m}+\operatorname{prime}(\mathrm{n})$ \# is prime, where $\mathrm{p} \#$ denotes the product of all primes $<=\mathrm{p}$.
(Formerly M2418)
$3,5,7,13,23,17,19,23,37,61,67,61,71,47,107,59,61,109,89,103$, $79,151,197,101,103,233,223,127,223,191,163,229,643,239,157,167$, 439, 239, 199, 191, 199, 383, 233, 751, 313, 773, 607, 313, 383, 293, 443, 331, 283, 277, 271, 401, 307, 331 (list; graph; refs; listen; history; edit; text; internal format) OFFSET 1,1
COMMENTS R. F. Fortune conjectured that $a(n)$ is always prime.
The first 500 terms are primes. - Robert G. Wilson v [The first 2000 terms are prime. - Joerg_Arndt, Apr 15 2013] The strong form of Cramér's conjecture implies that $a(n)$ is a prime for $\mathrm{n}>1618$, as previously noted by Golomb. - Charles R Greathouse IV, Jul 052011
(a very large entry)

2004: OEIS REACHES 100,000 SEQUENCES E-PARTY!

Also 40th Anniversary of start of database
Celebrates with E-party
130 guests from 28 countries
Richard Guy: "I told you 40 years ago not to start this, but you wouldn't listen"

PART 2

Unsolved problems I never got to tell Richard about

Operations on numbers and sequences - The Enots Wolley Sequence and other LES sequences Three Cousins of Recamán's Sequence Graphical enumeration and stained glass windows

Some operations on numbers and sequences

1248163264128256512

102420484096819216384
327683612244896192
38476815363072611248

Periodic, easy - explain!

The Fouriest Transform of n

IT'S CALLED A FOURIER TRANSFORM WHEN YOU TAKE A NUMBER AND CONNERT IT TO THE BASE SYSTEM WHERE IT WILL HAVE MORE FOURS, THUS MAKING IT "FOURIER." IF YOU PICK THE BASE WITH THE MOST FOURS, THE NUMBER

Write n in that base $\mathrm{b}>=4$ where you get the most 4's

$$
a(10)=14 \text { (use base 6) }
$$

A268236
$0, I, 2,3,4, I I, I 2, I 3,20$,
I4, I4, I4, I4, I4, 24, I4, 24,..

The Curling Number of a Sequence

Definition
of
Curling
Number

$$
S=7522522522, k=3
$$

Gijswijt's Sequence

Fokko v. d. Bult, Dion Gijswijt, John Linderman, N.J.A. Sloane, Allan Wilks (J. Integer Seqs., 2007)

Start with I, always append curling number

```
            | 1 2
            1 1 2 w
            | 1 2
            1 1 2 2 2 3 2
            | 1 2
            1 1 2 2 2 2 3
            | 1 2
            1 1 1 2 2 2 2 2 3
            | 1 2
```

$a(220)=4$

Gijswijt, continued

Is there a 5 ?

300,000 terms: no 5
$2 \cdot 10^{6}$ terms: no 5
10^{120} terms: no 5
NJAS, FvdB: first 5 at about term $10^{10^{23}}$

RUNS

0

HH HTHTTTHHT

RUNS transform = $31132 \ldots$

RUNS Transformation of a sequence:

HHHTTHTTH... becomes 3212...

Kolakoski \quad 22 $=1,2,2,1,1,2,1,2,2, \ldots$ is fixed

Golomb $\mathrm{A} 1462=1,2,2,3,3,4,4,4,5,5,5,6,6,6,6,7, \ldots$ is fixed

$$
a(n)=C n^{\phi-1}+\epsilon
$$

RUNS, RUNS, RUNS

A306211, from a high-school student, Jan 292019

Start with $\mathrm{S}=1$ Append RUNS(S) to S
 Repeat

1
11
112
11221
11221221
1122122122121
1122122122121221212111

After 65 generations (10^13 terms), still no 6 (Ben Chaffin)

The Enots Wolley Sequence

Suggested by Scott Shannon (Melbourne) in August 2020

The Australian politician Enots ("Snotty") Wolley?

"LES" Sequences

Lexicographically Earliest Infinite Sequence of distinct positive numbers with property that ******

No other condition: 1, 2, 3, 4, 5, 6, 7, ...
(The earliest of them all!)

LES examples

EKG sequence: $\operatorname{gcd}(a(n), a(n-1))>1$ for $n>2$:

$$
1,2,4,6,3,9,12,8,10,5,15, \ldots
$$

A64413

A98550
$1,2,3,4,9,8,15,14,5,6,25,12,35,16,7,10,21, \ldots$
The Enots Wolley Sequence: $\operatorname{gcd}(a(n), a(n-1))>1$ and
A336957
$1,2,6,15,35,14,12,33,55,10,18,21,77$, $\stackrel{\uparrow}{\text { Not } 4!}$

The Enots Wolley Sequence

n	1	2	3	4	5	6	7	8	9	10
$a(n)$	1	2	6	15	35	14	12	33	55	10
$2 ?$		\checkmark	\checkmark			\checkmark	\checkmark			\checkmark
$3 ?$			\checkmark	\checkmark			\checkmark	\checkmark		
$5!$				\checkmark	\checkmark				\checkmark	\checkmark
$7 ?$					\checkmark	\checkmark		\checkmark	\checkmark	
$11 ?$										

The Enots Wolley Sequence (cont.)
$\operatorname{Ker}(\mathrm{n}):=$ set of primes dividing n .

Theorem 1:

(i) $\operatorname{Ker}(m) \cap \operatorname{Ker}(a(n-1)) \neq \phi$
(ii) $\operatorname{Ker}(m) n \operatorname{Ker}(a(n-2))=\phi$
(iii) $\operatorname{Ker}(m) \backslash \operatorname{Ker}(a(n-1)) \neq \phi$

Proof: m exists, is unique, and $a(n)$ canst be less than m.

The Enots Wolley Sequence (cont.)

Theorem 2: For $\mathrm{n}>2$, $\mathrm{a}(\mathrm{n})$ is divisible by at least two different primes.
So not a permutation of pos. integers.
No primes or prime powers except 1 and 2.

Conjecture 1: Sequence consists of 1, 2, and all numbers with at least 2 prime factors.

Theorem 3: (a) Sequence is infinite.
(b) For any prime p, p divides some term.
(c) For any prime p, p divides infinitely many terms.
(d) There are infinitely many even terms.
(e) There are infinitely many odd terms.

The Enots Wolley Sequence (cont.)

Theorem 4: When an odd prime p first divides $a(n)$, $a(n)=q p$ where q is a prime < p.

What is q ?
Conjectures: $\quad \mathrm{q}=5$ iff $\mathrm{p}=7$
$q=3$ for exactly 34 values of $p(2,5,11,13,17, \ldots, 233,367)$ $q=2$ for $p=3,7, \ldots$, and all primes >367

Conjecture: For any odd prime p, there is a term $\mathbf{2 p}$.

Conjecture : All even numbers (except $\mathbf{2}^{\wedge} k, k>1$) appear.

The Yellowstone Permutation Theorem

A98550 $\quad a(n)=$ smallest number not yet in seq. such that $\operatorname{gcd}(a(n-2), a(n))>1, \operatorname{gcd}(a(n-1), a(n)=1$.
$1,2,3,4,9,8,15,14,5,6,25,12,35,16,7,10,21,20,27$
Theorem 5(*): Every positive number appears
Proof: 1. Sequence is infinite
2. Given B, exists $n _0$ s.t. $n>n _0$ implies $a(n)>B$.
3. Every prime divides some term.
4. Any p divides 00 many terms.
5. Every prime p appears naked in sequence.
6. All numbers appear.

QED
(*) Applegate, Havermann, Selcoe, Shevelev, NJAS, Zumkeller, 2015

The EKG sequence (cont)

Theorem 6: Every positive number appears

Proof:
There are several steps. (i) Sequence is infinite (easy).
(ii) Let $T(m)=n$ such that $a(n)=m$, or -1 if m is missing from sequence.

Let $\mathbf{W}(\mathrm{m})=\max \mathrm{T}(\mathrm{i}), \mathrm{i}<=\mathrm{m}$. Then if $\mathrm{n}>\mathrm{W}(\mathrm{m}), \mathrm{a}(\mathrm{n})>\mathrm{m}$.
(iii) Let $\mathbf{p}=$ prime. Exists \mathbf{n} such that $\mathbf{p} \mid a(n)$. If not, no prime $q>p$ can divide any term either, because if $a(n)=q k$ then $p k$ would be a smaller choice.

So all terms are products just of primes < p.
Choose $n>W\left(p^{\wedge} 2\right)$, say $a(n)=q k$, for prime $q<p$, so $q k>p^{\wedge} 2$. Then $p k<p^{\wedge} 2<q k$ was a smaller candidate for $a(n)$, contradiction.
(iv) When p first divides $a(n)$, say $a(n)=k p$, then k is a prime < p. If $k=2$ we have $a(n)=2 p, a(n+1)=p$. Otherwise we have $a(n)=k p$, $a(n)=p, a(n+1)=2 p$. Either way we see adjacent terms p and $2 p$.

Proof (continued)

(v) If for some prime p there are infinitely many multiples of p, then all multiples of p are in the sequence.
If not, let kp = smallest missing multiple of p. Find $\mathrm{n}>\mathrm{W}(\mathrm{kp})$ with $\mathrm{a}(\mathrm{n})=\mathrm{mp}$. Then $\mathrm{kp}<\mathrm{mp}$ was a smaller candidate for $a(n)$, a contradiction.
(vi) If for some prime p all multiples of p are in the sequence then all numbers appear. For suppose \mathbf{k} is smallest missing number.

Find $\mathbf{n}>\mathbf{W}(k)$ such that $a(n)$ is multiple of $k p$. Then k was smaller candidate for $a(n)$, contradiction.
(vii) By (iii) and (iv) we see infinitely many multiples of 2, and by (v) and (vi) we see all numbers.

Three Cousins of

 Recamán's Sequence

 Recamán's Sequence}

Max Alekseyev, Joseph Meyers, Richard Schroeppel, Scott Shannon, NJAS, and Paul Zimmermann(*)
(on the arXiv; Fib. Quart. to appear)
(*) P.Z. announced in February 2020 that he and five others had factored the 250-digit RSA challenge number RSA-250, taking 2700 physical core-years.

Recamán's Sequence

0	1	2	3	4	5	6	7	8	9	\ldots
0	1	3	6	2	7	13	20	12	21	\ldots

$$
a_{n}=a_{n-1}-n
$$

if positive and new, otherwise

$$
a_{n}=a_{n-1}+n
$$

- from Bernardo Recamán Santos (Colombia), circa 1992

Recamán, continued
Numbers that take a record number of steps to appear:

I	I
2	4
4	I 131
19	99,734
61	$18 \mathrm{I}, 653$
879	328,002
1355	$325,374,625,245$
2406	$394,178,473,633,984$
852655	$\geq 10^{230}$

(Benjamin Chaffin)

The First Cousin, $\mathrm{A}(\mathrm{n}), \mathrm{n}>=3$
To find $A(n)$, start with n, and add $n+1, n+2, \ldots, n+k$, and stop when $\mathrm{d}=\mathrm{n}+\mathrm{k}+1$ divides the sum

$$
\begin{aligned}
& n=3=3{ }_{4} 7_{5}^{\text {BINGO! }}{ }_{5}^{12} \pi_{6}^{\pi / 2} \text { (2 STEPS) } \\
& n=4: \begin{array}{llllllll}
4 & 9 & 15 & 22 & 30 & 39 & 49 & 60
\end{array} \\
& \begin{array}{llllllllllll}
5 & 6 & 7 & 8 & 9 & 10 & 11 & K_{12}
\end{array} \\
& \begin{array}{l|lllll}
n & k & d & \text { sum sum } & \text { (7 STENS) } \\
\hline 3 & 2 & 6 & 12 & 2 \\
4 & 7 & 12 & 60 & 5 \\
5 & 14 & 20 & 180 & 9 \\
6 & 3 & 10 & 30 & 3 & \\
0 & 0 & 0 & \text { IN lEIS! } \\
& & &
\end{array}
\end{aligned}
$$

The First Cousin, $\mathrm{A}(\mathrm{n}), \mathrm{n}>=3 \quad$ (cont.)

Our $A(n)=$ minimum $k>0$ such that $n+k+1$ divides $(k+1) n+k(k+1) / 2$

A82183(n) $=$ minimum $s>0$ such that

$$
\mathrm{T}(\mathrm{n})+\mathrm{T}(\mathrm{~s})=\mathrm{T}(\mathrm{~m})
$$

for some m, where $T(i)=i(i+1) / 2$

Which led to the solution:
Theorem 1: Look at odd divisors d of $n(n+1)$, different from n and $n+1$, and minimize | $d-n(n+1) / d$ |
Then the minimum $s=s(n)$ is $(|d-n(n+1) / d|-1) / 2$

Theorem 2: \quad Solve for m from $T(n-1)+T(s(n-1))=T(m)$ then $A(n)=s(n-1)+m-n$

The Third Cousin C(n)

To find $C(n)$, start with n, and successively concatenate $n+1, n+2, \ldots, n+k$, and stop when n || n+1 || n+2 || ... ||n+k is divisible by $\mathbf{n + k + 1}$. Set $C(n)=k$.
Or $C(n)=-1$ if no such k exists!
n=1: $\quad 1|\mid 2=12$ is divisible by 3 . Took one step, so $C(1)=1$. || means concatenate
$\mathrm{n}=8$: $\quad 8|\mid 9$ is not divisible by 10 , so we get 8$||9| \mid 10$.
8910 IS divisible by 11, two steps, so $C(8)=2$.
 7891011121314151617181920 divided by $21=375762434348292934151520$ 13 steps, so $C(7)=13$
$C(2)=80$: the concatenation $2||3|| \ldots|\mid 82$ is
$23456789101112131415161718192021222324252627282930313233343536373839 \backslash$ 4041424344454647484950515253545556575859606162636465666768697071727374 576777879808182 , which is divisible by 83.

n	$C(n)$	n	$C(n)$	n	$C(n)$	n	$C(n)$	
1	1	26	33172	51	2249	76	320	
2	80	27	9	52	21326	77	59	A332580
3	1885	28	14	53	53	78	248	
4	6838	29	317	54	98	79	31511	
5	1	30	708	55	43	80	20	All C(n) known exactly
6	44	31	1501	56	20	81	5	for $n<=1000$,
7	13	32	214	57	71	82	220	except two values:
8	2	33	37	58	218	83	49	
9	1311	34	34	59	91	84	12)
10	18	35	67	60	1282	85	25	887969738466613
11	197	36	270	61	277	86	22	
12	20	37	19	62	56	87	105	and
13	53	38	20188	63	47	88	34	
14	134	39	78277	64	106	89	4151) $=-1$ or $>10^{\wedge 14}$
15	993	40	10738	65	1	90	1648	(158) $=-1$ or $>10^{\wedge} 14$.
16	44	41	287	66	890	91	2221	
17	175	42	2390	67	75	92	218128159460	Conjecture 3:
18	124518	43	695	68	280	93	13	$C(n)$ is never -1 ,
19	263	44	2783191412912	69	19619	94	376	k always exists.
20	26	45	3	70	148	95	23965	
21	107	46	700	71	15077	96	234	
22	10	47	8303	72	64	97	321	
23	5	48	350	73	313	98	259110640	
24	62	49	21	74	34	99	109	
25	15	50	100	75	557	100	346	

Graphical Enumeration and Stained Glass Windows

Lars Blomberg, Scott Shannon, and NJAS
Part 1 is on the arXiv (\#2009.07918, Sep 16 2020)

Complete graph K_23

9086 cells (R) 8878 nodes (V) 17963 edges (E)

Solved by Poonen

 and Rubinstein 1998
Euler says

E = R+V-1.
R and V about equal tells us most crossings are simple.

> Complete graph K_23 with 9086 cells. Colored by our special algorithm.

Source:

https://oeis.org/A007678

Motivation

1. Extend work of Poonen-Rubinstein, Legendre-Griffiths to other families of graphs
2. Desire to create our own stained glass windows, in homage to Amiens, Sainte-Chapelle, Chartres, Strasbourg.

Our motto: "If you can't solve it, make art"

Sainte-Chapelle, Paris

The Two Known Results

1. Poonen and Rubinstein, 1998: Number of nodes and cells in K_n :

Basically $\binom{n}{4}$ minus complicated correction terms.
2. Legendre (2009), Griffiths (2010), ditto for $K _\{n, n\}$.

or equivalently

$=B C(1,3)$
Source:
https://oeis.org/A331452

$B C(m, n)=m X n$ grid of squares with every pair of boundary points joined by a line

BC = "Boundary Chords"

BC(3,3)

BC(9,2)

Left: Color-coded to show number of sides: 3 (red), 4 (orange), 5 (green), 7 (blue), 8 (purple)

Right: Same graph, colored using our special algorithm.

Numbers of nodes \& cells in BC(m,n)

This is the main problem of this section.

For 37 rows and cols see A331453, A331452

Answers are known for BC(1,n)

Theorem 1 (Stéphane Legendre (2009) and Martin Griffiths (2010))
Define $V(m, n, q)=\sum_{a=1 . . m} \sum_{\substack{b=1 . . n \\ \operatorname{gcd}\{a, b\}=q}}(m+1-a)(n+1-b)$
Nodes in BC(1,n): $\quad 2(n+1)+V(n, n, 1)-V(n, n, 2)$
Cells in $\mathbf{B C}(1, \mathbf{n}): \quad n^{2}+2 n+V(n, n, 1)$

Max Alekseyev pointed out that the Legendre-Griffiths results are equivalent to results in enumerating training sets for threshold functions found by him and coauthors (M.A., 2010; M.A., Basova, \& Zolotykh, 2015).

Furthermore, their work implies:
Theorem 8: All cells in BC(1,n) are either triangles or quadrilaterals.

Open Problem 2: Find a purely geometrical proof!

Interior Nodes in BC(1,n)

It appears that most interior nodes in BC(1,n) are "simple", i.e. are where just two chords cross.

For $n=1,2,3, \ldots$ the numbers of simple interior nodes are

$$
1,6,24,54,124,214,382,598,950,1334, \ldots
$$

A334701 has first 500 terms!
Open Problem 3: Find a formula.

This is a frequent problem: we have hundreds of terms of a sequence with a simple definition; the OEIS has 340,000 entries: need a smarter guessing program.

$B C(2, n)$

Conjecture 5
 In BC(2,n) cells have at most 8 sides, and if $n>18$, at most 6 sides

$B C(m, n)$

Theorem 2

The number of nodes in $B C(m, n)$ is at most

$$
\frac{1}{4}\left\{(m+n)(m+n-1)^{2}(m+n-4)+2 m n(2 m+n-1)(m+2 n-1)\right\}+2(m+n)
$$

and there is a similar bound for the number of cells.
(These are pretty good upper bounds)

San Diego, 1998:
Clockwise: Doron Zeilberger, RKG, Susanna Cuyler, me, Max Alekseyev, Mohammad Azarian, Christian Bower (Photo: Christopher Hanusa)

Two Days Ago!
Jean-Paul Delahaye

$$
1,2,5,7,15,22,31,50, \ldots
$$

+	1	2	5
1	2	3	6
2		4	7
5		10	

x	2	5
1	1	2

different numbers

Is there a formula?
Are these numbers related to some other problem?

We need more editors

We are swamped with submissions

No pay, but lots of fun
Work as much or as little as you like
Contact njasloane@gmail.com

Requirements: Familiarity with Math, English, and the OEIS

