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ON THE ZEROS OF BERNOULLI POLYNOMIALS
OF EVEN ORDER

by A. M. OsTrowskr 1

(Recu le 12 aoril 1960)

| §1. It is well known that the Bérnoulli polynomial B,, (z)
has exactly one zero r, between 0 and % NérLunD [2], p. 131,
proves that r, lies between —16— and % and states that r, tends
to % as ¢+ ®. | ’ '

In what follows we shall prove that r, tends monotonically

to 71— More precisely we have _ . __
1 1
i n N
: >i>—— >3 (v=2,3,.). (1)
"G e ALY

This follows from the relation

def 1 1 1 4 17 1 4 4
2 (G =) TR E T E T E e t
13
+M—2’:,o<p<1(v=1,2,...). (2)

41 & 3 4

o= 6% §% 1ob b T
13p 1
W WSp<1 (v=1,2 ). 3)

1) The preparation of this paper was sponsored Ly the U.S. Army under Contract
No. DA-11-02;’-ORD—2059. Mathematies Research Center, U.S. Army. I am indebted
for discussions to Mr. H. Fishman, M.S., and Dr. J. C. I Mibler, to the latter parti-
cularly also for checking many computations.
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" ‘ CIn 1950 DL Linven [1] proved that
1
ev << ; ) ([1)
and _
1 1 4 1
9:“»“.14.-7'07 = ®l. (5
STt e (8) bew) )

However, obviously the monotony of the r, cannot be derived
from an asymptotic 1elation like (5), nor can a relation of this
type be used for calculating the r.1

In the last part of this paper I discuss the asymptotic deve-

lopment of sin 6, into a Dirichlet series with even denominators
and integer coeflicients. Some numerical ‘computations made
by Dr. Miller suggested that these coeflicients may present a

certain interest from the arithmetical point of view. We prove’

mdeed some congruence properties of these coeflicients mod 4
and mod 8, Further, certain sequences of these coefficients can
be explicitly determined using Riemann’s C-function and the
Dirichlet’s L-function corresponding to the modulus 4,

§ 2. Wewill write from now on w for 20 and use with Lehmer
the expression

w o
(— 1t L}f,) ple) = Y L8 2xma ::’”‘ : (6)
o x={ t
We have from (2)
) 1 6
T T ()

where we omit for simplicity sake the index ¢ of 6, Introduéing
(7) into (6) we obtain, putting the result — 0,

o

) oS 20 sin (2e + 1) g
s L T 1" ®

Raphson approximation, It may be mentioned that for the numerical computatjon
of the vilyes T, Dr. Miler foung it barticularly convenient to derjve from (he
forimula (5) in SEeC L s approximate quadratic equation for sin 6, with an error term
O (247), '

2558

Zl".‘l;’().S' O BERNOULLI POL YNOMIALS 29
Put
1
a — sin 0, 8:2;' (9

then we obtain, isolating in our equation the term sin § = 4,

sin 30 SHE _
6 < 8cos26 smf — 8% cos 40 + j—u {10)
x=5 %X
§ 3. We will have to use repeatedly the inequality
3w
sinmx<msinz(m>1,0<mx<7), (11}

which follows easily directly for m = 2 and for m = 3 from
the fact that the expression

(sin mz — m sin z)* = m (cos mz — cos z)

is negative under the conditions indicated in (11). It follows
then, since :

1 2 T
- - =T o6,
B—27:<4 r'v)<12 G<

sin 36 < 3¢, Cos 40 =1—25in220>1—Fq.

1

Introducing this into (10) and using cos 20 = 1 — 242 we obtain
.°'<3(1—232)4‘3_0—82(1—8.0’)-{-2i- {12)
. 3% . . x=p x*

We will assume from now on that we have
v25, u=10. (13)
This assumption will be dropped only in the section 12. —
Then we have

o 'w'éu oo[‘"_ mi___ifi_l)
;sziu:x; (?> Sx;,) (?) = (x; S T 4-4_

1 1
=46(1.01734306—1 ——————— <0.42.
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We introduce this into (12), bring the second term to the left and
divide by 8. Thus we obtain

(1-33)c/a<1—c=( —88) —0.588 <10 585,
/

On the other hand,_\\‘e have from ¢ = 5 op

2\k _ 210 0.08
3(3)" =% < 0. 052 < m
3 _0.083 13 o _0.085 1__g. 533
3" 1 —gp2° 3 1—382 " T1—3p
and it follows
2
§<1~3/2, c<8—-%. ) (14)

As the are sin series;

. z3 o 1 2y — 1) 2t
aresinz = z + F+v;2 2.4 2y vIi’
has monotonically decreasing positive coefficients, we have easily
for 0 <z <1 and convenient p w1th o< p<;

- 3 pat 1
arcsin x = z F + o i—= (15)
Forz=06=sing< 8:2%% follows
g
e<0[1 +m0}<
<8(1——-) [1 +2 J < 8(1——)(1 +—)
6<s, (16)
which proves Lehmer’s inequality 6 < § for vV 25.
§ 4. We rewrite now (8) in the form
6 5 . ,
Z (— q)t (052m0 (— 1ot sin (wa-i)e_{_s’ (17a)
o= (2)* wzi (20 + 1)*
S - i (— g)ort COS 200 cos 2w9 Z (— 1)0 1 sin (2&)-{—1-)9. (175)

“=7 f2m (2o + 1)
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We shall express the remainder terms in multiples of
| mo= 147" . : (18)
For any integer n > 14 we have by (13)°
nHfm = (14/n)* < (14n)10

and therefore

1<1su<027m é<0082m 2%<0032m 2%<0005m (19)

In our estimates we shall use the Inequality -

sin sin (z + 1
:coz> (z 4+ 1)«

. (521, >0, (x+1)a<'r:). (2>0)
z* (z + 1) .

To prove this inequality, observe that it is sufﬁaent to prove

z+1>sm(z+ 1) a

z - S0 z o«

that is, ,
(z+ 1) sin za — z sin (z + 1)a>0,

But the expression to the left is = 0 for « = 0 and its derivative
with respect to &, ’

(‘ 1)x(cos Ta — cos (z+1)a}

is > 0 under the conditions of (20)

§ 5. We use now in the first sum of (176) the formula

~

P .
Cos 2w =1 — 25in2 9

and decompose S as follows

- (—yet o=  iwet Sin? @B
s w=7 (2"")“ 2w§7 ( 1) (20’)“
et Sin 2o +1)6
+ ;( 1) TRet 1 (21)
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Here we have by (18) and (19)

\1'2 (* “‘rl 1 > 4 10 bl
m o> # > m— e =M {1 — (14/16)10) > (1—0.27)m .

In what follows, we will use the letter p, with or without

indices, to denote positive numbers < 1, which need not be
otherwise specified and need not be the same.
We can therefare write

(_ 1)&?1

7 (2e)*

8

=(1—0.27p)m. (22)

I

w

Further, we have, using (11) and (14),

@ 1000 o '
1 Sin*w® 1 1 1 1
2"‘(—1)‘”“”“’ <z Y o — <
| &= (2e0)™ 23u-t QZ=7 T m:;)Ol o
1 7 dx 1 Fdr 532 1 2000
< = T —_ < —
23t Gf T ,@J(;O z* 7 8% 6% | 9.2000% _<
100 710 50 \8
< e < 100 (Z) m << 100 (%) m< 0.01m.
And, again, by (11) and (19
» again, by
@ N @
S\ ( 1)m+1 sin (2(-)—1)9 5 1 : _:.Z Z 1
e (20 + 1)* $=6 (20 + 1)u71 7 gy o
2 dz 25 1 25 1
< — < — - < 01m
4“5'[ 27t T gar 5w T 8 gqu
It follows now from '(21) and (22)
S=(1—0.38p)m. (23)
§ 6. We consider the second sum in (17a). We have by
(14) and (20)
sin 76 sin 96 flAnHO sin 70 , 76 .
- \ 9,1. - H3 = I - I - /Pm
7 11 7 7
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Further, using sin 30 = 3¢ — 463, sin 56 = 55 — 20g3 + 1645,

in e 9 - 2
smBO‘WMnSQ(ﬁ___E)G 4 [1\_3 + ‘,‘c_J _
311- 5u 3!1- 5k 3# 5t 5t
_ ip
= —@ = 0.02 pm
Therefore
5 ¢ in (9 .
sin (2 1) 6 3 5 ,
Z (—1)‘0“(2(&\_*_—:),3:(3—11‘5_14)0_*—(713—0'02}’),”' (24)
w={ @

§ 7. Consider now the first sum in (17a). We have

6

(—qet 05208 /1 1 4 44 gy

=, (2w)* 2% 4R g gw T ggr gou
_ c_z_sin229 sin236_sin’46 sin’SG_sin’GG _

ou 4 6 gu 104 12 )
= — 280" + Sl 3

6 - ) . — e S—
S, = 92 Z (— 1)@ sin? » 0
1 — ]

w=2 (2"’)“

where by (20) and (19)

' ’ ’”
S = 2p sxn4u26 _ 8p’'ct _ 8p” = 2.2pm .

}We have,-therefqré,
8 6 g wH
Y (=)ot 9‘(’—23)—‘39= ¥ L) 2804 2.2pm . (25)

w=1 o=1 (2a)*

We have now by}23), (24) and (25) from (17a)

6 = i =)o + (3—3)3—280=+ (1—0.4p+9.2p)m. (26)
w=1 (20))“' 3”’ 5u

Here the last term can be written as

m(0.6+9.2p+0.4(1—p)) = (0.6+9.6p")m .

L'Enseignement mathém., t. VI, fasc. 1.
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§ & We put now, using (14),

a=3—17, 0<n<d. (27)
Then, (26) becomes

6 - w-1{
\ =1 3 5 (3 5
§—n =\ ((AT)““.L‘@—F—(——-——)'Q*iS(ﬁ’—‘.‘Sn—F772) +
w=1 |\~ :

+ (0.6 +9.6p)m.

Here we bring all terms containing 7 to the right:

Lv =Nt 3 s L ,
+ X GaF — ot [ T 28— (0.6 9.6p)m =
:T,< _%*i)—{-—&S’n—i’.Sﬁ
We put now |
I:%_%_i. , (28)
Then we obtain
(1—x)n—28~q2=:—u—R+E, (29)

where we have put

43 & 1 (30)
E=—(0.6+9.6p)m. (31)

§ 9. The expression z defined by (28) is posuwe as follows
from

R AR

In the same way, we see that R is positive:

110

4>1+1+1>4 (\%)”+ 4(%)”+ (—2-)

. R
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We have, therefore,

3 1 1
1 L
I<r<Z<too1r 1=z°< +1000
4 12p ;
R<—, zR =2 = 12.0.082p'm = 0.99p" m ,
6* 184 g F
zR
=% = - - (32)

Further, by (19),
9 -10 _
2z = o <9.271%18)™ = 0.01pm,

2 12
‘ f_xx =0.02pm . - (39)

The expression to the right in (29) is, as R > 0, < 82, and we
have from (29) by (27) :

(1'— ! )” <28( ) 4+ 1<1.002

Too1) 3% ;1< L0,

. 10 i
<148, 2347 <38 = (1%) pm.=01(1—pim.

Using this in (29), we obtain now
(1—2z)n=8—R+E, C(3%)

E, = —(0.5+9.7p)m. (35)

§ 10. From (35), we have now easily
|E | < 11m,
Bz vo 05 o ' (36)
./'/ ‘
Dividing now (34) by 1 — z we have

82 22 Rz ' E, r
1 —z - 1 — + E + —z 1 (37)

n—8+R— 8z =

and from (32), (33), (35) and (36), we have for the right-hand
cxpression in (37):

(0.02p, — py + 0.05p,'— 0.5 —9.7p,— 0.05p,) = — (0.4 + 10.9) pm.

C
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On the other hand, we have from (28) by (19)

" 3 / 4 5 '7)!0 -7)10
tr— = A — )= — (42} +5(Z
o 12 (16“ 204 < (8. ) 5(10. )pm

3r = ;—3—-—1.4pm.

Introducing this into (37), we finally obtain

1 4 3 & 5 0.4+12.3p
T AT w T m Tt — . 38
T e T iR e 14+ (38
By (27), we have then
et 1 & 8 & 4 13p .
T T TG E T e I e T 9
1
— <
110=p<1(v25).
From (38), it now follows easily that
’ -
n< 8. (40)

§ 11. We shall apply now (15) to z = &. We have obviously
by (14) and (19)
o M 1 1 1 0.001 2.7

T— o “T— 5 “Jeh1 _10% 28 < 1g2 <10+

3_o _3m
01 —o <108

Further, from (27), (40) and (19)

3¥—¢c* =3 ¥ =33 F P <3P <33 <0.9m,

and, therefore, from (15) and (39), as (%< Z_(?; ,
1 4 17 1 4 X 13
6= — L 4 171 4 4 13p (41)

§ 12. The formulae (39) and (41) have been only derived for
¢ = 5. However, the direct comparison of the expressions

(8
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given by these formulae with the values of 7, for ¢ — 1,2,3,4
given with ten decimals by Lehmer 1) shows that these formulae
alsohold fore¢ = 1,2, 3, 4. This proves the formulac (2) and (3).

§ 13.  Lehmer’s formula (5) and our formulae (2), (3) suggest
that 0, as well as sin 6, possess asymptotic development by infi-
nite Dirichlet series. In this connection, apparently, the deve-
lopment of sin 0 gives a more natural and more interesting
result. We will now prove that there exists a Dirichlet series

oo qn

n={ (2")u 42

N

with integer ¢n such that we have for ¢ > o and every positive
integer N : '

In

n=y (2n)*

1=z

def
Ny = sin §, —

= 0(N+ 2™") (v ) ... (43)

§ 14. It is obvious from (3) that (43) is true for N <6 for
a certain Dirichlet polynomial. Assume that we have for a
certain value N the relation (43) for a certain Dirichlet ‘poly-
nomial with N terms. Introducing (8) into (43), we have then

2N cos 2wf sin (20 + 1) 0 N g
o= (_ 1 w+1 < v v) . © +
& m‘gi P e (20+1)" m; (20)*
+o {1 > (44)
i+ 2*/

Here both cos 206 and sin (2w + 1) 6 are polynomials in
o,.= sin 8, with integer coefficients. Putting these polynomials
in (44), we obtain then, denoting by M the greatest of their
degrees,

M 2N Alew) 1
x;fl - n; (2n)" (4N + 2)*

1

1) These values have been checked independently of Lehmer by Dr. J. C. P. Miller.

“



B‘ e Ev J@\/

2558 >

i A ML ONTROWSKT
.\1‘ 1_\‘ 13(w) , 1
s ve= Yoo § UL o 1)
x=1 n=y (2n) (4N + 2)
cos 208, sin (2w 4 1) 6, 95 C(n“)) ( 1 )
R e = Y (AN + 2%/’
“with integers A%, B and C) and therefope
AN D
n 1
e = + 0 (%) (45)
= n;, (2n)* (4N 4 2%

with integer D.. But, now it follows from (43) that

Dy=Dy=..=D_=o,

A

and we have, therefore, putting

4 9, =D, (N < n <2N), ‘ (46)

again the relation (43) with 2N instead of N. :

Repeating this procedure indefinitely, the existence of the
Dirichlet series (42) is proved.

Introducing the asymptotic development (42) into the
Maclaurin series for aresin z, we obtain an asymptotic Dirichlet
development of 6, itself. However, in this development, as we
see from (2), the coefficients are no longer integers.

§ 15, In what follows, we give with the kind permission of
Dr. J. C. P. Miller the first fifty coefficients of the series (42)
which he has computed.

n 1 3 4 5 6 7 8- 9 10
n 1 -1 4 -3 -4 -4 8 11 & 4
n 11 12 13 14 15 16 17 18 19 20
9 12 —-48 —12 -8 -—16 25 -16 -4 20 0
n 21 22 23 24 25 26 27 28 29 30
9n 32 -12 24 248 -4 12 & —208 -28 16
n 31 32 33 34 35 36 37 38 39 40
' 32 —41 48 16 =32 -400 -36 -20 -48 88
n 41 42 4: 44 43 46 47 48 49 50
9 -40 -32 44 Shh —16 —24 48 732 8 4
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Dr. Miller drew my attention to the properties of the coeffi-
cients of the secries (42) which appear to be suggested by the
above values. The odd coeflicients correspond exactly to the
denominators which are powers of 2, while all other nume-
rators are divisible by 4. : ‘

We will now prove that these properties are indeed true in
the general case. Beyond that, we will prove for the numerators

¢n Which correspond to n = 2% that we have

n=(—1" =2 + 1 (mod 4) (n — 2% . (47)

We will prove even a more precise formula
In=(—0""2(k —1) —1 = 4"+ % + 1 (mod 8) (n — 2%) . (48

Further, we will determine "directly all 7 éorresponding ton
non divisible by 8 by forming generating Dirichlet series for
these numerators. We will find in particular for an odd natural

421;_ = — qu-(u = 1 (mod 2]) .

§ 16. Expressing sinn (ém +1) 9 ar—1d cos 2w6 as polynomials
In o = sin 0, we have, putting 2¢ 4+ 1 = u, 20 = g,

sinub = uo+ R, (o), . (50)
cos gb—1 =——g’%+“Tﬂ(o) , (51)

where our R, (s) and T, (o) are polynomials in o with integer
coeflicients, which are all multiples of 4. .

Indeed, this is true for o = 1. Assuming our assertions true
for a certain w, use the following relations and congruences
mod 4:

€0s (20 + 2) § — cos 2w0 = — 2 sin 6 sin (20 4+1) 8 = — 25 (20 + 1) o
= —2¢® (mod 4) ,

cos (20 + 2) 0 =1 — 20262 — 952 — 1—2(w+1)262 (mod 4) ,
which proves our assertion (51) for w 41, and

sin (20 4 3) 6 — sin (2w + 1) 6 = 205 cos 2 (@ + 1) 6
=201 — 2w + 1)?6%) = 26 (mod 4)

C
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which proves our assertion (50) for « + 1.
Further, it follows from the identity with a natural k:

k.
sin 289 = 2k gn @ IT cos 25ve |
v=q
that, developing cos 2**! § in powers of ¢ — sin 0, we have

. R
cos 28718 — 1 — 9% 1gr [T cog2 2k — 4 (mod 2%#+1) (519
=1

V=

§ 17. Introducing the relatfons (50) and (51) into (8) and l

solving with respect to ¢ — sin 6, we obtain

S Sp = R < B 1L NN S TR
I R =T
= © /T‘Em(c) ‘ R2m+1 (0)
_w;( ! ((m“ " e+ 1)"> ' )

We introduce now the two Dirichlet series well known in
the analytical theory of numbers of which the first is not
very different from Riemann’s Z-function while the second is
Dirichlet’s L-function corresponding to the modulus 4:.

UM=:O——%>UQ: -%, (53)

w ¥

where the summation index gz here and in what follows runs

through all positive odd integers subject to the restrictions
explicitly indicated, and

u—1
_ 2 .
L(s)szis‘:pgzﬁ, (54)
(=1 ®
. »°

where p runs through all odd primes. Then we have for the
first three right hand terms in (52), putting

1.,

r = .
w

L]
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a0 - w+] :p’ _2 2
v D v — Y HUW =220, (se)
w=1 (20)“ M:Q
x [

% Lp—1—1, (59)

w=1 (2("’ + ”u.—l

o (_”m+l w? _ i o (_ 1)m+1 _
L eer 1L gae
P — 872
— U2 = U2 = TS0 U - (s

Introducing these expressions into (52) and bringing the term
with ¢ to the left, we have

L(y.— 1) o = .2:1——2:3 U (u) — 202 i:if Up—2 —
S © ’T'Zm (c) R2m+l (G)) 59
— m;i (—1) ( 2a)® + m - (59)

§ 18. We can replace ¢ in (59) By the series (42) and

- . a,

consider now (59) modulo 4, taking a Dirichlet series Zi a8 = 0
n=

(mod 4) if all @, are = 0 (mod 4). Then the last sum in (59)

1s = 0, by what has been proved in Section 16 about (50) and

(51). Further, we have mod 4:

. u—1
—1) %y 1
.L[}L—”=;*( i E;F=U(u),
(20 + 1) N
U(u—2)=2m=U(#)=L(u—1) (mod 4) .

It follows, therefore, from (59)

r— 222
1—=z

L(p.—i)cE( —Qxcz)L(p.—l) (mod &) .

If we multiply this congruence on both sides by

Pt
p) )
Lv!(p.—” — I‘I(i_(:”—p>,h

p>2 "



