%I M3430 N1391 #26 Sep 23 2024 00:23:46
%S 4,12,15,21,35,40,45,60,55,80,72,99,91,112,105,140,132,165,180,168,
%T 195,221,208,209,255,260,252,231,285,312,308,288,299,272,275,340,325,
%U 399,391,420,408,351,425,380,459,440,420,532,520,575,465,551,612,608,609
%N Numbers y such that p^2 = x^2 + y^2, 0 < x < y, p = A002144(n).
%D A. J. C. Cunningham, Quadratic and Linear Tables. Hodgson, London, 1927, pp. 77-79.
%D D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 60.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Hugo Pfoertner, <a href="/A002365/b002365.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from T. D. Noe)
%H A. J. C. Cunningham, <a href="/A002365/a002365.pdf">Quadratic and Linear Tables</a>, Hodgson, London, 1927 [Annotated scanned copy of selected pages]
%e The following table shows the relationship
%e between several closely related sequences:
%e Here p = A002144 = primes == 1 mod 4, p = a^2+b^2 with a < b;
%e a = A002331, b = A002330, t_1 = ab/2 = A070151;
%e p^2 = c^2+d^2 with c < d; c = A002366, d = A002365,
%e t_2 = 2ab = A145046, t_3 = b^2-a^2 = A070079,
%e with {c,d} = {t_2, t_3}, t_4 = cd/2 = ab(b^2-a^2).
%e ---------------------------------
%e .p..a..b..t_1..c...d.t_2.t_3..t_4
%e ---------------------------------
%e .5..1..2...1...3...4...4...3....6
%e 13..2..3...3...5..12..12...5...30
%e 17..1..4...2...8..15...8..15...60
%e 29..2..5...5..20..21..20..21..210
%e 37..1..6...3..12..35..12..35..210
%e 41..4..5..10...9..40..40...9..180
%e 53..2..7...7..28..45..28..45..630
%e .................................
%e 3^2 + 4^2 = 5^2, giving x=3, y=4, p=5 and we have the first terms of A002366, the present sequence and A002144.
%Y Cf. A002144, A002366, A376429.
%K nonn
%O 1,1
%A _N. J. A. Sloane_
%E More terms from _Ray Chandler_, Jun 23 2004
%E Revised definition from _M. F. Hasler_, Feb 24 2009