login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002319 Order of largest (finite) group with n conjugacy classes.
(Formerly M1592 N0621)
4

%I M1592 N0621

%S 1,2,6,12,60,168,360,720,2520,20160,29120,443520,1944,126000

%N Order of largest (finite) group with n conjugacy classes.

%D E. K. Annavaddar, Determination of the Finite Groups Having Eight Conjugacy Classes. Ph.D. Diss., Arizona State Univ., 1971.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H J. Poland, <a href="http://dx.doi.org/10.4153/CJM-1968-042-9">Finite groups with a given number of conjugate classes</a>, Canad. J. Math. 20 (1968), 456-464. (<a href="/A002319/a002319_1.pdf">Annotated scanned copy</a>)

%H Antonio Vera Lopez and Juan Vera Lopez, <a href="http://dx.doi.org/10.1007/BF02764723">Classification of finite groups according to the number of conjugacy classes</a>, Israel Journal of Mathematics, 51:4 (1985), 305-338.

%H Antonio Vera Lopez and Juan Vera Lopez, <a href="http://dx.doi.org/10.1007/BF02766124">Classification of finite groups according to the number of conjugacy classes II</a>, Israel J. Math. 56:2 (1986), 188-221.

%H A. Vera-Lopez and J. Sangroniz, <a href="https://onlinelibrary.wiley.com/doi/pdf/10.1002/mana.200410508">The finite groups with thirteen and fourteen conjugacy classes</a>, Math. Nach. 280:5-6 (2007), 676-694.

%Y Cf. A003061, A073043, A006379.

%K nonn,nice,more

%O 1,2

%A _N. J. A. Sloane_.

%E a(13)-a(14) computed from Vera-Lopez--Sangroniz (2007) results by Ed Bertram, communicated by _Max Alekseyev_, Jul 04 2020

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 12 12:31 EDT 2021. Contains 344947 sequences. (Running on oeis4.)