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ABSTRACT

Computation ef the numbey bp of unlabeled ncnseparable graphs on p
polnts has been carrvied out for p g 12 by one of the authors, based on equations
derived by the other author. The number bp' 4 of those with ¢ lines has sim-
ilaply been obtained for pgll, The numerical results are reportad, and aspects
of the computation are discussed.

The method of counting nonseparable grapbs involvas finding the sum
of the cycle indices of the automorphism groupe for all graphs, then tha cycle
index sum for the connected graphs and fipally the cycle index sum for the non-
Beparable graphs. Extracting the cycle index sum of the connected graphs from
the cycle index sum for all graphs is based on a prinelple which can be applied
in a number of situations. OF three methods tested for implementing this prin-
eiple, the clear winoer in practice waz not the ¢ne with the apparent computa=

tional advantages,
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1. INTRODUCTION

The evaluation by computer of the number of unlabeled nonseparable
graphs is reported on in this paper. A graph is nomseparable if it is connected
and has no point whose deletion results in an empty or disconnected graph. The
nonseparable graphe other than the one with p= 2 points are just the 2-connected
graphs. Nonseparable graphs have been called blocks by some graph theorists and
star graphe by theoretical physicists. The graphs with which we deal are finite

and undirected with no loops or multiple lines.

Calculation of the number bp of unlabeled nonseparable graphs is diff-
icult because it requires the simultaneous determination of the additional
information contained in the sum of the cycle indices of the automorphism groups
of the graphs being counted. Thus as we shall see bp is obtained as the sum of
rational numbers, one associated with each partition of p. The computation is
recursive, requiring the numbers associated with the partitions less than p in
order to determine those associated with the partitions of p. In addition the
computation requires the analogous information for connected graphs, which in

turn must be extracted from that for unrestricted graphs.

The formulas for counting unlabeled nonseparable graphs were developed
in [8] and received a detailed exposition in the book by Harary and Palmer [3,
Chapter 8]. The first computer implementation was carried out by L. Osterweil,
who found bp for p £9 as reported in [8]. The values of b}:> for p <18 are
presented in Section 3 after cycle index sum counting methods are introduced
and the basic equations presented in Section 2. For comparison we also give
the numbers cp of unlabelcd connected graphs and gp of all unlabeled graphs on

p points, for p < lE.

Including the number of lines as an enumeration parameter in counting
nonseparable graphs is conceptually straightforward. However it expands con-
siderably the storage required as well as the number of arithmetic operations.
In Section 3 we give the numbers b 4 of unlabeled nonseparable graphs with p

points and q lines for p £ 1l. For comparison we include the corresponding

numbers Cp q and gp q of connected and unrestricted unlabeled graphs.
> 3

There are. several alternative strategies available for solving the
basic equations which determine the cycle index sum for nonseparable graphs.

The choice of strategy for computer implementation is discussed in the final
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Sectlon In-particular, three different ways of extracting the cycle index sum
of the connected graphs from that of the unrestricted graphs were tested. The

best method in practlne was not the one which appeared to be most clever and

"eff1c1ent beforehand. The principle involved in this case can be expected to

have wide application in unlabeled graph counting problems. It is in fact

-applled to an important part of the extraction of the cycle index sum of the

:nonseparable graphs from that of the connected graphs.

2.° COUNTING WITH CYCLE INDEX SUMS

In this section we introduce cycle indices and cycle index sums for

' sets of'graphs, then present the equations which are the basis for counting

" nonseparable graphs.

If g is any permutation on a finite set it can be expressed uniquely

as a product of disjoint cyclic permutations. Let j(n;g) denote the number of

 these cycles which have length n. Then the cycle type of g is defined by
- (l) Z(g) =Tr s:](nig)’
. . ) n D
_"_wﬁere S13S9383,... are some set of independent commuting variables. If G is a
* finite permatatlon group then its cyele index Z(G) is the arithmetic mean of
" the cycle types of its elements.  That is

@ 7(6) = -—é—Z 7(g),
E

where |G| denotes the order of G. Often the cycle index is written,Z(G;sl,sz,

33,...) to display the variables and to provide a convenient form for indicating

substitutions'for the variables.

"As an example, let S, be the symmetric group on the object set {1,2,3}.

5 The identity permutation (l)(?)(3) as cycle type s?. The permutations (1)(23),
©(2)(28) and (8)(12) all have cycle type s,8,. Then the cycles (123) and (132)

have cycle type s;. Thus we have

NE 0% T
Z(Sa) = £8] *35.5, %38,

In general, let Sp denote the symmetric group of degree p and order p!.
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of non-negative integers with weight

H3) ] = § nj_

n=1

equal to p. Thus the sum of these cycle indices takes the elegant form
(-] oz

(3) Z Z(8 ) = eposn/n.
= 1

It is interesting to note that if & is the nth power sumea?«af variables

Oy 585500, .- then Z(Sp) is the homogeneous product sum of order p in these
variables. In this context the usual notation for Z(Sp) would be hp, and (3)
expresses a familiar form of the relations between these symmetric functions
{5, p-71.

"Every graph has an automorphism group, which we consider to be a
permutation group on the point set. For any set A of graphs we denote by Z(A)
the sum of the cycle indices of the automorphism groups of the members of A.
The case of the set Hy of all four graphs on p= 2 points is illustrated in
Figure 1, where each graph is shown with its autcmorphism group. The cycle
index sum is
1 1

1_3 1 1.3
= = = +2(=s  +=s 8
2(6511-251321-353) 2(251 3% 2)

(u) Z(H4)

i

L 3 2 2
§SI+ 3152+353.



Z(S,) 5,2(8,) 812(8,) Z(S4)

FIGURE 1

The four graphs on p = 3 points.

Note that the number 4 of graphs on p= 3 points is obtained as the
sum 4 = %1-21-% of the coefficients of Z(H3). In general, for any set A of
graphs the number with p points can always be found from Z(A) by summing the
coefficients of the terms of weight p. This is because the coefficient sum in

any cycle index must be 1.

Now let Hp denote the set of all graphs on p points. The cycle index
sum Z(Hp) can be readily computed in terms of the number c(j) of cycles of lines
induced on the complete graph by a point permutation with cycle structure

(3) = (jl’jz""’jp)' The formula is

(5) 2= D 2°(j)TTéj3/TT3 tn38,

P i=p n B/ ath
This follows from a slight generalisation of Burnside's Lemma, in the spirit of
Redfield's Decomposition Theorem [7, p.u445], as reported in [8, Theorem 2]. One
need only observe that ¢(3,0,0)=3, c(1,1,0)=2 and ¢(0,0,1)=1 in order to eval-
uate formula (5) for p = 3. The answer is easily seen to agree with the sum
given in (4). For arbitrary (j) the number of induced line-cycles is given [3,

equation 4.1.9] by
| . Iny . : .
(6) C(j) = Z n{(g] +32n+l+32n}+ z (m"n):lmjn’
n m<n
where (m,n) is the greatest common divisor of m and n.

Let H dencte the set of all graphs, C the set of all connected graphs,
and B the set of all nonseparable graphs. The cycle index sum Z(H) is determined
by (5) and (6) as



(&
Z(#) = § Z(H).
D
p=¢  °
0f course in any actual computation there is an upper bound P on the number of

points to be considered.

To express Z(C) in terms of Z(H) we need the notion of substituting
Z(C) for cycle variables. This follows the rule

(7) sn[Z(C)] = Z(C;sn,s . Py

on®*%3n? "

which also applies to the substitution of any cycle index sum. The relation

can now be written

o

(8) Z2(H) = exp 2 sn[Z(C)B.

In Section 4 we will compare three different ways of solving (8) for Z(C) in
terms of Z(H). It can be seen that (8) is a generalisation of the usual rela-
tion [3, equation 4.2.3] between the ordiﬁary generating functions

g(x) = % gpxP and c(x) = ? chP, which follows at once from PSlya's Hauptsatz
(6, £.163]. Indeed (8) follows from a direct lifting of P6lya's Hauptsatz to

cycle index sums in place of crdinary gernerating functions [8, equation (8)1].

As intermediaries in the computation of Z(B) the cycle index sums
7Z(C') and Z(B') of the rooted connected graphs C' and the rooted nonseparable
graphs B' will be needed. A rooted graph is a graph in which one point is
siven the special status of root point. The root point must be left fixed by
every automorphism of a rooted graph, and is omitted from consideration in the

cycle index sum. It is easy to obtain Z(C') from Z(C) since

az(Ci

(9) Z(c') = 3,

This follows from a general result [8, Theorem 1] which was first cbserved by

G.W. Ford, and remains true if C is replaced by B.

The relation determining Z(3') from Z(C') is

(10) Cg(et) = exp § = s [2(B")[s 2(C) 1.
lI.I Il 1
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Stpuctural corsideraticons Jue te R.O. horman are usrd in the proef [8, Thecrem
4}. Since (9) applies with B In place of C we can inteprate to cbtain
!
(11) : Z(B) = Z(E')dsl+‘Z(B;O,52,s3,...) .
0
The fixed-point-free portien of Z(B) is then determined by
(12) Z(C;O,sz,sg,...) = Z(B;O,sz,sg,...){SIZ(C')].

Further consideration of the structure of a connected graph with respect to its
maximal nonseparable subgraphs is required to justify this relation [8, Theorem

51.

Relations (5) through (12) serve to determine Z(B). The number bP of
wnlabeled nonseparable graphs on p points is obtained from Z(B) by adding up

the coefficients of all terms of weight p.

The numbers bp,q of unlabeled nonseparable graphs with p points and
q lines are counted in a parallel manner using an expanded version of the cycle
index sum. For any set A of graphs, let Z(y:A) denote the sum over the graphs

in A of yq times the cycle index of the automorphism group, where q is the num-
ber of lines. Then b s obtained from Z(y:B) by summing the coefficients of

L |
the terms having the factor y% and weight p in the point-cycle variables.

The expanded cycle index sum Z(y:B) is determined from Z(y:H) and
Z(y:C) by modified forms of equations (6) and (8) through (12). The medifica-

tion is simply to replace Z( ) by Z(y: ) at every occurrence. To compute

Z(y:H) initially one modifies equation (5) by replacing QC(j) with the poly-
nemial
o Gl SR jn .
s 2 (P) (myn)j_3
(13) Tre™y 28 2 n 20 T (™) wn
R m<n

n-1lq .
Here [m,n] is the least common multiple of m and =1, and.[ia—i is the greatest

L n 1 “ n-1 e *
integer less than or equal to —— . This corresponds [8, equation (7)1 to a
<

factor of (l+yn) for each induced line-cycle of length n. The only other change

needed is to generalise equation (7) to

) - e W )
(1) sn[a(y:ﬂ)] = Z(y :A;sn,s?n,ssn,...).




3. NUMERICAL RESULTS

The numbers bp of unlabeled nonseparable graphs on p points computed
on the basis of equaticns (5) through (12) for p <18 are presented in Table 1.
Development of the programs was the work of the first author. Some of the
experimentation concerning choice of methods for solving the equations is repor-
ted in the next section. The calculation was performed on a PDP 11/45 with a
56 kilobyte parity core memory and a twin RKOS fixed disk system for secondary
storage. The programs were written in FORTRAN with the exception of some sec-
tions of the multiple precision integer arithmetic routines, which were written
in the assembly language. They were compiled and run using the DOS/BATCH opera-
ting system. Because the disks provide essentially permanent storage of results,
it was possible to compute Z(H), Z(C), and Z(B) in order, each through terms of
weight p = 18. Approximate times for these runs are 1/4% hour, 3 hours and. 2l
hours respectively, with an additional 1/4 hour for printing ocut all of the 1596
different terms needed for Z(B). Storage requirements were met with a single
disk, having 2.4 megabytes total capacity including .5 megabytes taken up with

the operating system.

Alsc provided in Table 1 for purposes of comparison are the numbers
gp and Cp of unlabeled unrestricted and connected graphs, respectively. C. King
had computed 8, for p £25 as reported in [3, Table A3]. Stein and Stein [9] had
computed Cp,g for p £18, from which one can obtain &, by summing q from ¢ to [g].
Our own computations confirm the values of &, and Cp reported in Table 1. It
will be seen that our results for bP are in agreement with thos? of L. Osterwiel

for p €9, as reported in [3, Table A3].

It is shown in [3, Section 9.4] that bp’vc 'vgp. rom Table 1 it

appears that cp/gp approaches 1 much more rapidly than bp/cD.

The numbers bp’c of unlabeled nonseparable graphs with p points and q
lines ccmputed on the basis of equations (5) through (12) modified by (13) and
(14) for p €11 are presented in Tables 2, 3 and 4. Program development and
implementation for the determination of Z(y:H), Z(y:C) and Z(y:B) through terms
of point weight p= 11 followed the same pattern as for Z(B). The additional
line parameter increased storage and time demands so much that in spite of the
reduction of p from 1% to 11, two disks were required for storage and the total

running time rose from 27 hours *to 60 hours.
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g, £,
 hat PJ 1S5 —T——o 9 743 5u2
" PJ 6457 ; 1 _#,,_—e—} 10 11 716 571
L 341 [ 12 005 168
1 900 969 091
2 1 g 1 006 700 565
2 ‘ 1 018 997 864
1 153 620 333 545
3 12 164 059 830 476
4 165 091 172 592
3 48 432 939 150 704
i 6 13 50 335 907 869 219
11 50 502 031 367 952
o 10 28 361 824 488 394 169
5 21 14 29 003 487 462 848 061
34 29 054 155 657 235 488
56 30 995 890 806 033 380 784
6 112 15 31 397 381 142 761 241 960
156 31 426 485 969 804 308 768
468 63 501 635 429 109 597 504 951
7 853 16 63 969 560 113 225 176 176 277
1 o4y B4 001 015 704 527 557 894 928
7 123 © pul 852 079 292 073 376 010 411 280
8 b 5 17 2u5 871 831 582 084 026 519 528 568
12 346 245 935 864 153 532 932 683 719 776
| 194 066 1 783 160 594 069 429 925 952 824 734 641
| 9 261 080 18 1 787 331 725 2u8 899 088 890 200 576 580
| 274 668 1 787 577 725 145 611 700 547 873 190 848

TABLE 1

| The numbers of unlabeled graphs, connected graphs and
nonseparable graphs on p £ 18 points.

{ _“7?—

C




Again, Tables 2, 3 and 4 are supplied with the numbers Cp,q and gp,q |
of unlabeled connected and unrestricted graphs with p points and q lines for -
p € 11 for purposes of comparison. These numbers were calculated by computer
for p £ 18 by Stein and Stein [9], in what seems to have been the first major E
graphical ernumeration project undertaken on a computer. Our own results serve ‘
to verify the accuracy of theirs for p £11. In computing gp,q’ it is necessary‘
to compute every term of Z(y:H) in the process; however, these can be summed |

in running totals for each p<p and q ¢ . Since only the totals need to
psp Qs 5 y gp,q

. be kept in corder for the ¢ to be determined, the requirements for storage

'd

|
space and consequent retrieval time are much less than for our procedure, which ‘
used all of Z(y:H) to determine all of Z(y:C) for p<p. The latter was neces-

sary for obtaining Z(y:B) and indeed all terms of Z(y:B) for p<p were needed '

in order to compute those terms of the highest order p = P |
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g .q °g,q 89 q q 10,4 €10, £10,q
0 0 1 0 0 0 1
0 0 1 1 0 0 1
0 0 2 2 0 0 2
0 0 5 3 0 0 5
0 0 11 4 0 0 11
0 0 25 5 0 0 26
0 0 63 6 0 0 66
C 0 148 7 0 0 165
0 47 3u5 8 0 0 428
1 240 771 9 0 106 1 103
7 797 1637 |10 1 657 2 769
70 2 075 3 252 |11 9 2 678 6 759
433 i 485 5995 |12 121 8 5u8 15 772
1 729 e uou 10 120 |13 1 034 22 950 34 663
4 796 13 855 15 615 |1 5 898 53 863 71 318
9 981 0 303 21933 15 23 370 112 618 136 433
16 542 26 631 27 987 |{16 69 169 211 966 241 577
22 8ut 31 400 32 403 |17 162 593 361 342 395 166
97 015 33 366 34 0u0  ||18 317 364 561 106 596 191
27 837 31 996 32 403 |[19 530 308 795 630 828 728
25 350 27 764 27 987 |l 20 774 876 1 032 75& 1 061 159
20 570 21 817 21 933 |[21|l 1 oow 519 1 229 228 1 251 389
14 971 15 558 15 615 |l22|| 1 167 116 1 343 120 1 358 852
9 8u2 10 096 10 120 ||23}] 1 22w w30 1 3u8 674 1 358 852
5 885 5 984 5 995 |loull 1 166 153 1 245 363 1 251 389
3 210 3 247 3252 |l2sl] 1 o012 187 1 057 836 1 061 159
1621 1635 1637 |26 803 138 827 086 828 728
765 770 771 || 27 583 958 595 418 596 191
342 aul aus  ||28 389 779 394 820 395 166
147 148 e |29 239 362 211 428 241 577
63 63 63 |30 135 571 136 370 136 433
25 25 2 31 70 999 71 293 71 318
11 11 11 |32 34 548 3L 652 34 663
5 5 5 |33 15 729 15 767 15 772
2 2 2 i3 6 743 6 757 & 759
1 1 1 |35 2 763 2 768 2 769
1 1 1 |iss 1 100 1 102 1 103
3 427 428 428
38 165 165 185
39 66 66 66
40 26 26 26
lu1 11 1 11
|u2 5 5 5
43 2 2 2
" & 1 1
45 i 1 1

TABLE 3

The number of (p,q)-graphs which are nonseparable, connected

and unrestricted, for p=9 and 10.



TAgE 4

The number of (p,q)-graphs which are nonseparable, connected, and unrestricted, for p

11

- ‘11,9 11,9 “11,q
0 0 0 1
1 0 0 1
2 0 0 2
a 0 0 5
4 0 0 11
5 0 0 26
6 0 0 67
7 0 0 172
8 0 0 467
9 0 0 1 305
1 0 235 3 664
11 1 1 806 10 250
19 i 3 833 28 259
13 189 33 851 75 415
14 2 242 109 8ub 192 788
15 17 491 313 670 467 807
16 9L L8Y 803 905 1 069 890
37 380 528 1 870 168 2 295 898
18 1 212 002 3 978 187 L 609 179
19 3 194 294 7 775 398 8 640 134
20 7 197 026 14 013 0u2 15 108 047
21 14 185 903 23 350 556 24 630 887
22 24 965 489 36 052 12 37 433 760
23 39 222 782 51 662 585 53 037 356
24 56 168 906 68 803 769 70 065 437
25 73 507 286 85 251 441 86 318 670
26 88 352 1u3 98 355 794 99 187 806
2 97 907 571 105 723 785 106 321 628
28 100 320 075 105 925 685 106 321 628
29 95 254 0u6 98 945 882 99 187 806
30 83 948 028 86 162 087 86 318 670
31 68 750 894 69 994 055 70 065 437
c 52 365 761 53 002 668 53 037 356
a3 37 116 8695 37 417 977 a7 433 760
3u 24 492 2uk 24 624 123 24 630 887
5 5 051 469 15 105 276 15 108 0u7
36 8 618 LOL 8 639 030 8 640 134
37 4 801 22 4 608 750 4 609 179
38 2 293 093 2 295 733 2 295 898
39 1 068 920 1 069 824 1 069 890
40 467 L72 467 781 467 807
i 192 671 192 777 192 788
42 75 372 75 410 75 415
u3 28 243 28 257 28 259
Uy 10 244 10 2u$ 10 250
45 3 661 3 663 3 664
46 1 304 1 305 1 305
Y7 467 467 L87
48 172 172 172
49 67 67 67
50 26 26 26
51 11 11 11
52 5 5 5
53 9 2 2
n 1 1 1
55 1 1 1
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Q NUMERILCAL METHODS

The polynomials Z(H), Z(C), Z(B) of Section 2 are specified by an array
of ccefficients and an array of partitions. In calculating Table 1 an array of
the 1596 partitions of the numbers < 18 ie required. All the polynomials in the
calculation are referenced through this partition array so it was held in core
throughout. The rational ccefficients, however, were held as direct access
disk files since the fractions had quite large numerators and several separate

arrays were required.

The partitions were precalculated in lexicographic order and were
stored so that if the partition of p being considered was p=1Ip.n;, where
Psony >0, then Py and n. were packed intc one word. An array of pointers marked
the beginning and end of each partition. Another array of pointers marked the
beginning and end of the terms for each value of p. For the enumeration by lines
shown in Tables 2, 3 and 4 the only difference in the storage arrangments was

that arpavs of fractions were held instead of single fractions.
¥y

Three methods were considered for the calculation of Z(C) from Z(H)
q solving equation (8). These were tested for p £ 15 which required 684 terms.
The best of these methods was chosen for the enumeration up to p= 18, which

required 1596 terms. Irmediately from (8) we have

skEZ(c)] = leg Z(H).

"ne~318
i

k=1

This can be solved using & method suggested by Cadogan [1] based on M&bius inver-

sion, giving

ulk)

(15) Ze) = "

k

W o~18

s, [log Z(H) ].
k

5
A

This equation is the point of departure for the first and third of

our methods. In the first, or 'dumb", method log Z(H) was replaced by

i+l p
Sedl . (e - 1)

il i~18
=

i=1

oxe successive powers were evaluated as economically as possible and then summed.

The time taken for this method was ‘o% hours up to p = 15.




o The second method was described in [€, p.332] and seemed attractive
()

enough to be dubbed the "clever" method initially. Let H be the set of graphs

with all components having order at least i and let Cj be the set of connected

(l))

graphs on j points. Then Z{H = Z(H), and Z(C) car be read off by selecting

(2))

the terms of weight 1. Next, z (8 is calculated from the relation

@

Z[H(z)} _ Z[H(l)) W, %sk[z(cl)}.

1

Now we can read off Z(C,) + Z2(C3), denotec for brevity by Z(C,.3), since the
smallest nonempty disconnected graph with components all of order at least 2

must itself have order at least 4., In similar fashion
° i

exp - ) F'sk["(CZ-S)]
1

from which one can read off Z(C,_,). Finally

wp)]

'PT[ b

2(:9) = 2(6) exo-] £ s l2(c,
1

giving Z(Cs_ls). In this process the exponentiaticn was computed by the recur-

sive scheme described for the third method belew. Extensive use was made of an

additional array of flags to indicate whether a number in a disk held array was

zero or not; the point was to save d?sk access time where possible, The time

taken for calculation up to [ = 15 was 3 hours.

The third or "best" method differed from the first in that log Z(H)
was calculated recursively. The recurrence is obtained from the .following
general relation by replacing A with Z(C{) and Ei with the terms of weight 1
in Z(H). If )

then E5 = 1, and
n n

E % E 1 (n k)

o for n>0. In the theory of symmetric functions this is equivalent 1o the well-

known recurrence relation between the S; and the r [4, p.83] which can be




derived from (3) by differentiation. The idea has been used in counting labeled
connected graphs by Gilbert [2], and in counting unlabeled connected graphs by
Stein and Stein [9, p.9] and Cadogan [1, p.195].

Clearly the recursion will serve to calculate elther exponentials or
N . . 3 - 1
logarithms. The time taken to calculate Z(C) up to p =15 was lg hours, so that
the third method was by far the quickest. It was used tc extend the results up

to p= 18, and took some 3 hours for the calculation.

The calculaticn of Z(B) from Z(C) falls naturally into two parts as
described in Section 2; the calculation of Z(B') using relation (10) and the
calculation of 2(3;0,32,83,...) using (12). It is relatively trivial to find
Z(C') by differentiating Z(C) as indicated in (9). Then 2(B')[s;Z(C')] is
obtained from Z{(C') in exactly the same way that Z(C) was obtained from Z(H),
using of course the third method for the computation. Frem this Z(B') is
extracted recursively. One keeps a running total of the contributions by the
terms of Z(B') obtained from composing over s,Z(C') up to, say, weight i. Sub-
traction of this total from Z(B')[s;Z(C')] leaves just the terms of weight i+l
in Z(B'), which are used to update the running total so that the process can be

continued.

It is worth pointing out here that the compesition Z(B')[s,Z(C'}]
involves the substitution, for each factor s; in each term of Z(B'), of the poly-
nomial s,Z(C') with all the subscripts multiplied by i, that is, inflated by i.
The consequences of this are that for p <18, up to 18 inflated forms of s,Z(C')
will be required, raised to powers up to 18. Varying combinations of these poly-
nomials are then multiplied together (up to 5 factors in all for p £18) to com-
plete the substitution. The very great deal of computation here was economised
by precomputing all the inflated powers, saving only nonzerc coefficients, and
setting up an array of pointers. The total disk space required for p £18 was
only 4 times that reguired to store just s,2(C'). The multiplication together

.)

of the polynomials was performed by nested loops. Extracting Z(B;O,sz,sa,..
from Z(C;0,8,,54,...) using equation (12) follows exactly the same recursive
method, but is much less demanding of time since the number of nonzerc terms is
relatively small. The final step of integrating Z(B') and adding Z(B;0,s,,S4,--

to cbtain Z(B) is quite straightforward.
Times taken for the various calculations up to D = 18 were:

(a) 3 hours for determining Z(B*)ESLZ(C')],




{b) 7 hours for precomputation of the inflated powers of SIZ(C'),
(c) 21 hours for extracting Z(B'),

(d) 1f hours for extracting 2(850,52,33,...),

F i

(e) % hour for the integration of Z(B') and its collation with 2(350,52,53,...).

Calculation of Z(y:B) followed the same pattern as used for Z(B), but
did require considerable modification of the programs. Extension was necessary
to deal with the fact that the ccefficients of the partition arrays are now poly-
nomials in y, rather than simple fractions. This means for instance that com-
puting up to p =1l requires up to 55 fractional ccefficients for each partition.
The longest single step in the computation was the analogue of step (c) above,
Which took 50 hours up tc p=11. The whole of the free space on two 2.4 mega-

byte disks was required for working stcrage,
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