The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.



(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002037 Product of all primes up to 3^n.
(Formerly M4303 N1799)

%I M4303 N1799

%S 1,6,210,223092870,3217644767340672907899084554130,

%T 256041159035492609053110100510385311995538591998443060216114576417920917800321526504084465112487730

%N Product of all primes up to 3^n.

%C This is the sequence denoted by P_i in van Lint's solution to problem 5412 posed by P. Erdős (Amer. Math. Monthly, 74 (1967) p. 874), used to compute the sequence A002038 related to the same problem. The next term, A002037(6), has 301 digits. - _M. F. Hasler_, Jan 02 2013

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H H. P. Robinson and N. J. A. Sloane, <a href="/A002037/a002037.pdf">Correspondence, 1971-1972</a>

%H J. H. van Lint, <a href="http://www.jstor.org/stable/2315844">Solution to problem 5412</a>, Amer. Math. Monthly 74 no.7 (1967), pp. 874-875.

%H J. H. van Lint, <a href="/A002037/a002037.png">Scan of solution to problem 5412, Amer. Math. Monthly 74 (1967) 874.</a>

%o (PARI) A002037(i)=prod(j=1,primepi(3^i),prime(j)) \\ _M. F. Hasler_, Jan 02 2013

%o (PARI) {print1(P=L=1); for(i=1,6, forprime(p=L+1,L*=3,P*=p); print1(","P))} \\ _M. F. Hasler_, Jan 02 2013

%K nonn

%O 0,2

%A _N. J. A. Sloane_

%E Better definition and one more term from _M. F. Hasler_, Jan 02 2013

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 21 05:35 EST 2021. Contains 340333 sequences. (Running on oeis4.)