This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001589 a(n) = 4^n + n^4. 11

%I

%S 1,5,32,145,512,1649,5392,18785,69632,268705,1058576,4208945,16797952,

%T 67137425,268473872,1073792449,4295032832,17179952705,68719581712,

%U 274878037265,1099511787776,4398046705585,17592186278672

%N a(n) = 4^n + n^4.

%C a(n) is prime if and only if n = 1. - _Reinhard Zumkeller_, May 24 2009

%C The statement above (and the corollary that 5 is the only prime term in this sequence) can be proved using Sophie Germain's identity x^4 + 4y^4 = (x^2 + 2xy + 2y^2)(x^2 - 2xy + 2y^2). - _Alonso del Arte_, Oct 31 2013 [exponents corrected by _Thomas Ordowski_, Nov 29 2017]

%H Vincenzo Librandi, <a href="/A001589/b001589.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="http://dx.doi.org/10.1007/BF03023374">Notes</a>, Mathematical Intelligencer 2(2) (1980), p. 66. - _Reinhard Zumkeller_, May 24 2009

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (9,-30,50,-45,21,-4).

%F G.f.: -(5*x^5 + 38*x^4 + 43*x^3 - 17*x^2 + 4*x - 1) / ((x - 1)^5*(4*x - 1)). - _Colin Barker_, Jan 01 2013

%t Table[4^n + n^4, {n, 0, 40}] (* _Vladimir Joseph Stephan Orlovsky_, Feb 14 2011 *)

%o (PARI) a(n)=1<<(n+n)+n^4

%o (MAGMA) [4^n+n^4: n in [0..30]]; // _Vincenzo Librandi_, Oct 27 2011

%Y Cf. A001580, A001585.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 19:25 EDT 2019. Contains 328037 sequences. (Running on oeis4.)