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aver all classes of O,

stpgcture of O, 15 well k

ving the number of

ued the numbs
: Fdromy Lo . The

warids fnpud evele will bie us ul to distinguish this

rom the evele of inpul vectors which swill ap

pear later.

T New following Slepian® we study the opera-

¢ can be identified by
v of length 7

il el rof fen

fupal evcles of h'!l-'lh / 8]

ion of an element of O, as it indices a per
tion among the inlslll vectors, To see the
ation induced by an clementof O, it is
CONVET ..mt to draw a dingram in the -u||m\|nff
nrer. Put the 2% input vectors in a column
in natwal order; operate with the given cle
mint of O, on cach of the input vectors; put Lthe
iransformed veetors in the next cohimn, and
¢ this process until the initial column
pears again, Using such a diagram the in-
i permutation among the input vectors
ca=ily be found out. For example, et us in-
izate the permutation induced by the
varinble transformation Ve (12) (3). Nig is
Slepinn’s notation of a variable transformation
an clement of O,), meaning the operation of
Iving the permutation o to the input
ables, followed by complementation of the
variables specified by the locations of U digits
ressed in Dinary torm. The above-men-
gram in this case is the following:

repes

first

HinT

000 100 110 010 W0
001 101 It 011 001
110 0uo 1430 110 010
il 001 101 111 011
100 110 010 000 100
101 11l 011 001 1!
110 010 (S E}] 100 (3]
1t O11 (3 101 111

!"."-u"‘ this the pern
veciars ia found to conzizl of two cycles, (H000),
005, (110), (0103) and ((L11), (QOL), (101}).

As is seen from the above digram, if there

utation among the input

«, Ew) in the induced
s another cycle (2,

A x}\‘ic ‘_’E;, =
tion, the E
Z.') in that permutation, where =
mutuaily complementary inpul vec-
hoeveles will be called cam plementary
other, In the case that these two eyeles
the cycle is called seli-com pleme ttary.
mple, the eycle (00}, (01), (11}, (10))
< selbcomplementary.

The element of O, which induces self-com-
tary cyeles among input vectors will he
clerred 1o as an inadmissible element and the
le will be called

i T €X3

eme

ment which is not inadmissib

o. Obviously, if an element of the ol
e (or inadmissible), the othe rele
af the class are all admissible (or in-
i of O, are divided
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-1, Hence the ¢

0 two parts, admiss classes and inad-

hle classes.

i J function remains invariant under
tion of an element of O, if and anly if,
on is constant in value along every
input vectors induced by the given

el-dual function should have com-
ary output values for a pair of mutaily

d thus no seli-

cimenlary input vectors, §
mciion is invariant under the operation
nacdmissible element of O, since the in-

Lorrespondence

adniissible element induces a seli-comple-
h contains mutually com

ctors in it, Oncthe other

muentary

dement the two-valued

oulpul can e (lw"nul arbitrarily to one of a

pair of mutun lI\ conplamentary eveles, There
exist, ther IR self.dual  [unctions,
‘.'\lm'h are invariant under the operation ol the
admissible clement, where ¢ s the conjugate
¢l

to which the given element helongs and
K(C) is the number of cyeles in the induced
permulation, which is the same for all elements
in the class (.

Therefore

e = 28072 for an admissible class and
= () for an inadmissible class, (3)

The calculation of K{(C)
Slepian.?

Thus the remaining problem is Lo decide
whether or not a given class is admissible.

A permutation induced by an element of O,
contains a4 s

described in

complementary cycle, if, and
only if, each subvector of some input vector
corresponding to each input cycle of the ele-
ment is cventually transformed into its com-
plementary vector and these subvectors are
simultancously  transformed into their com-
plementa vectors when opernted upon  re-
peatedly with the given element. For example
the variable transformation (1234} (56) is in-
admissible since the subvectors (1010) and (01)
of the input vector (101001) are transiormed
simultancouvsly into their complementary vec-

tors upon an operation with the given variable

transformation,

When a subvector is first transformed into
smentary veclor after operating £
n element of Oy, P is defined as the
live to the sub-
\L(.Illl The subvector will be transformed into
tary vector, when operated upon
it F, 3P 3P, - v, tEmes,

ity of the perinds of an fnput cycle
ubwvectors is called the

the ¢om

veriod of the input cycle rel

'((y"|3‘|.
with the ¢

The tota

: input cycle,
ment of Gy, is inadmissible, if and
wat cyele in the

only il, each ment has a
the in
put cycles from 1 to j, there exists a set of
periods Py, Pa - - - Py, such that,

nonempty period set and, number

= s+ Py =+ = (24 1Py, (6)

P is a period in the ith period set and
f; 15 2 non : wative integer.

The

i;-.hl.l_\

I set can be ohtained as [ollows. As
ts are the same for
so that it sutfices to

all elenu

determine sets for a representative

element of the ¢ \s a representative, let's

take such an element that its even input ey
have no complementation, such as (123 -

1 €Vt les with a

wsition, such as Niog .- ¢

and its o gle complementa-

tion upon the frst |
\]‘ wib e iE) .
Suppase an even inpul cycle, (1, o [N 8

then, the relevant subvector

has a periad £,
must be of the form in Fig. 1.
we have

L= 2ZmP. (7)

There

Conversely, for any P satislving (7), we can
find a relevant veetor of the ferm in Fig, 1.

Fas T
4
i
R il !
[ sl £
i i
‘ "

Fig, 1--A relevant subvector of an even cycle of period P

Thus the period set of the even inpus
length £ is a set of all jolegers satisf il
An odd ingmt cyele Nym <. )
with a period 2 must have the relevant sub-
vector of the form in [ig. 2, since the vector,
obtained by operating 7 times with the od
input cycle, has as its first 2 digits j‘l"( (“
corplementary vector of the last P d
original vector and the remaining (/= ) di -nl#
are the same as the first ((—2) digits of the
original vector shifted rightward by P digits. l
Therefore, we have '

= @Qm + 1)P. \ 1_'8)1['

l_a

Hence the period set of an odd input cycle]
‘nth [is obtained by decomposing [into the!
form of (8) in all possible ways. |

{ is a complementary vector of 4.

|
|
"
A is a subvee £l = H
[
="

|
. 2—A relevant subveetor of an oidd cvcle of period £.

From the above discussion, we have the

[ollowing criteria:

11 An element of O, containing at feast one
even input evele of odd length is ad-
raissible since the periad sel for such a
cyele is empty [rom (7).

25 An element consisting purely of odd in-
put cycles of odd length is ins
since any odd cycle of
period of one.

An element consisting purely of odd in-
put cycles of even length may he vither
admissible or inadmissible so that the
period sets of all the cyeles must be
caleulated and examined to detg
there is @ set of periods satisfy p.

[n the case where only odd i7pat cy-
cles occur and where they are all of the
equal length £, the clement is inadmi
hle since all cycles share the period of L
41 An element cansisting pure!

put cyecles of even length is inadmissible

since all eyeles hinve the period of one in ‘

linissible

odd length has a

3

of even in

common.

3) An clement, containing at least a pair of ‘
aidd input cyveles of even lengtt of
add IL-n«lh is admissible since t Roel
of one of add length is <wld Wil the
period of the other is even. Thus, (6] can
never be satisfied,

6) An element consisting purely of odd in-

put cyeles of odd fength and of evea in-
put cycles of even length is inadmissibile
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since all cycles share the period of one.

An element, where only even input cveles
and odd input cyeles hoth of even length
occur, may be either admissible or in-
admissible, and must be carefully in-

-3

vestigated.

The ahove exhanst all possible cases so that
onece the structure of a class in O, is given, it
can be determined by applying the above
criteria whether or not the class is admissible.

[t iz now possible fo determine xe in (3 and
<« we may calculate P, from (4) since the other
cuantities, except xe, are already given by
Slepian.!

The values of £, up to n=>06are tabulated in
Pable [ with the total number of sell-dual
functions. In the same entry are shown the
numbers of the symmetry typest and of the
self-com plementary  symmet tyvpes of the
logical functions of variahiles. Seli-comple-
mentary symmetry  ype is Elspas’ usage?
meaning the symametry Lype of logical functions
which are of the sare Lype as their Linary com
plements. Thus every self-dual function is of
the self complerentary Lype, but the converse
is nol Lrue.

Trom the tahle it is observed th
hers of self-dual functions and of their sym-
metry types are exceedingly small compared
with the numbers for the whole of the Jogical
functions.

1L the num-

{wao Toba
Electrical Communication Lab.
Musashino-shi, Tokyo, Japan

An Electronic Generator
of Random Numbers*

The random number generalor described
here was developed asa partof an experimental
sequential detector constructed at the U
Navy Electronics Laboratory.! A sequince of
ones and zeros with a predetermined probabil-

ity description wits e ded as an input to the
detector, This binomiad
Ly first generating wniformly distributed 14-bil
candom numbers and then comp ring these
candom numbers with a preset U hit number,

The operation of the random number gen

COuenee wits generited

erator is based upon the following principle,

* Received August 10, 10615 revised manuscript re-
ceivinl, Novembior t3, 1961,
t(r AL Illard snd R E. Simmops, “An Experi
mentil Secqential Petovtor,” U, S, Navy Flectronics

Lah, San Dicgo, ¢ alif, Rept. 999; Naoveml 'r, 1960,

Types oF SELF-DUAL Foscriass

—— -
| Number of Tyjus of |
of Logical i Seli-Comp

Number of

mentary

Funehons* Tvr
3 | 1
0 2
12 l| G
| 102 | i2
1228 158 | 1094
400 507 i
806 243 T3 |

G(6 Gl

Suppose a gate operating on a l-mc clock has a
single input consisting of a train of pulses of
sullicient amplitude to cause the gate Lo assume
the one state and of pulse width greater than 1
usec. Then for a period equal to the input
pulse width, the output of the gateisa packet of
1-me pulses. If a train of variable width pulses
is applicd to the gate input, the output of the
gate is a succession of packets of pulses, cach
packet containing a variahle number of pulses.
[ the pulse width of the input is a random vari-
Lution over a finite

able with a uniform dist
range the number of pulses in each packet is
uniformly distributed. The expected number
of packels with an odd number of pulses is the
d number of packets with

aame as the expecte

an even number of pulses. Hence Prob {odd]
1§

=Proh {even; =

To determine if the number of pulses in a
picket is even or add, a binary tip flop (ini-
tinlly at sero) is trig cred by each pulse in a
packet, and the state of the flip-fop is sampled
ts. The aue state
| number of

in the interval between
of the (lip-flop will indicate an o
pulses, the sero state an even number. The sym-
ned (ke one state of the tlip-flap

bol 1 is assi

upon sampling, and the symbol 0 is assigned
to the zera state.

The train of random width pulses men
tioned above is obtained [rom a noise con-
trolled |
tron
modulate the pul
with the leading ed
at fixed intervals. The pulse width varies ran
ts, the maximum

s penerator. The output of a thyra-

generator is amplified and used to

s width of a pulse generator,

5 of the pul

gs goourring

domly  between fined i
width depending on the
witlth in

rmed, and st

waxinmm modulation

.L'].'"I'il'.‘_‘lll'l.' from [lLi|-|'

1VE

applied. Pulse
to pulse is
n to reject such an
ve rmentioned above, the moiivation for

tistical tests

no reds

ssimplion

constructing the random number  generator
if anes and

was to oblain a random sequence
zeros with a predetermined prolability of a
ane. ‘This is accomplished in the following

manner, Fourteen of the fip-l previously

described are trigaered inde pendently and userl

in parailel with a 14-bit shilt reg - K. Th
state of cach Hip tlop 13 Syritten” into a St
of N The contents of K are then shifted

through a comparator C torether with the con
Lents of & shift register ¢ which contains a
preset (xed] bt binary number, I the con
tent of R is greater than the content of ©Q
ering the content of cach as a 14 bit

{con
hi
wise the outputl is a4 zero. Assuming that the 14
bits of R (i.e., the 14 units of the gencrator)

rv number), the output of Cisa one; other

are independent, 24 binary numbers are equally
possible, Tenee, the fyed number in @ can be
chosen in such a manner that Probh {C=1}

talies an any fived value which is a multiple of

- P ————

MPUTERS

y-18 gyl s hetween zero s

(Fisa -lmiuvv-i‘-_.n\,,

termined probability of a an
| :

col

Many prolilems

analytically ean be
methad, Maonte Carlo
cvaluate integeds, siin
ele., and require a liarsg
hers. Methods ol generating
numbers on digital compiters
a1l of these methads are time e

suppuy

and oceasionally fail to posses
dred randomne

The above des
crator could convenientiy b

S ln'n_xi;.‘rli._-

ribed ra

ing into an operativnal recist
magnetic or paper tape. A 1520
rate can be casily attained, the
bers are not cyelic, and statistn
given no reason for rejecting th
that the gencrated numbers 1.
randomness properties,

U 5. Nawl

=i

Inconsistent Canonical For

of Switching Functions”

\ ecananieal farm for swite!

1 most hinary computers ¢t}

(Boolean functions) is a form i

function has a distincl represes

forms are useful in enumerating

{iie functions and in detecting tu

eries.
Reed! and Muller? obsery ed 1
arbitrary  switching function

could be written in a canenical

of modulo-2 addition and nulti
noted here by -+ and - respeetive
is shown in (la)-(tc) for one
variahles.

%=1 1
"=
9 = 3!

I'he estension Lo more than it
alivious.

11 can be argued from se
replacement, consistently thr
form, of  any variahble by
(' =143 should wicld an
il form, The coefficients /

function might, of course.

sistent compler entations, up

hinations of the cariahiles.
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enelc iIon o1 pei MmMutdatiof sTY ences. & cif & H \Q{—O
CM R. J. Ord-Smith
1 (\l{\Q Computing Laboralory, University of Bradford, Bradforid 7
) \ 3 There has heen considerable interest in the last fen years or 50 in methods of generating sequences
i G 7 of arrangements ol n elements in such o way ihat each of the n! arrangements is aenerated once,
f!_ l ( o and ounly vnce, in the sequence. We call such segnences of arrangements perntutation sequences.
: fipart 1 we consider seyeral kinds of permutation sequences and deseribie some of their properties.
1 , Part 2 is devoted to a detailed examination of the practicaily most cificient six published algorithius
1 MQ > and a discussion of implementafion difficalties and compiier overheads.  An Appendix to Part 7
3 contains an extensive hibliooraphy of related Wwork.
i (Received November 1969)
E
| 1, Tntroduction one can initialise the process by providing a boolean

parameler set irue. This will be rcturned false at
when subsequently given false in each call, will retur
false until, after n! calls, it will be returned true apain,

Tt is necessary, at each procedure call, to recall the
point which has heen reached in the sequence of arrange-
ments. {f the martks are distinct and numerical then the
arrangement can itself be used to give this information.
This technique has been described by Mok-Kong Shen
(1962 and 1963) and featured in seve -al of the algorithms
to be described below. However, if there is to be no
such resiriction on the marks then the information lias
to be kept separately and, for this purpose, @ signature
is contained within the procedure.

Much use of permutation algorithms has been made in

the last few years in studies in Combinatorial Math-
ematics. Many conjectures have been proved or have
_ fallen by computer techniques  involving systematic
£ searches. Increased efficiency in such searches is due in
part to improv ements in the speed of permutation
algorithms, Timing these algorithms on one compuler
shows speed increases of a hundred or two hundredfold
between the earliest and the latest.

One of the interesting applications has been the search
for orthogonal Latin Square pairs of order 10, which
; Euler had conjectured did not exist. Searches began in
c cartest in the mid-1950s with the copstruction of large

fast computers, but it was not until 1959 that the exis-

s tence of the first two such pairs was announced. By 3. The Tompkins algorithms

- 1962 thousands of pairs had been discovered, and the The first explicit description of computer algorithms

_ speed of search had increased by a factor of 1012, Some for the generation of permutation sequUences seems to

| of these developments arc nicely described by Gardner have been given by Tompkins (1956). Incidentally. his
(1966). The author (Ord-Smith, 1965) has described an paper also reviews some of the problems for which

1 application of Block Design technigues to the problem permutation algorithms are required.

; of constructing redundant fault reducing circuits using The basis of the Tompkins algorithms ijs that the

i majority votetakers.  Block Design theory usually signatures are modificd at cach call by a process involving

d regards as isomorphic two designs whose incidence mixed radix arithmetic. The simpicst\crgion,aitributcd

§ muatrices have permuted TOWS and columns, since they to M. Hall, Jar., will show the mechanism.

;‘ constitute merely re-labelled varieties within re-labelled

4 ‘Uli;cks. But by successively presenting fault carrying Hall algorithm

g 171‘\{.-;1'mauon to a fault I'C("U,(_‘mg: circuit based on such a A signature consists of n clements £, £ . - - tu COQ

| design, a particular labelling ol mput and output wires tatino a mixed radix qumber in which the alemer

4 Call produce greater fault reducing efficiency, ie. the has radix k. #, is effectively a dummy element which

i elimination 9\‘ faults in fewer PASSES. Thus, two 150~ remains zero.

i morphic designs can differ in this respect. Systemalic Successive calls produce modulus arithmetic counting

' ceperation of incidence matrices by permutation has which takes place in the signature from the most signi-

§ been used to find best Fault reducing circuits. ficant radix end. Tor example, with 7 = § we would

3 . g ; T have sionatuces as shown in the first panel of Table 1.

| 2, Compuier permutation sequence algoritnnms Fach signature defines an arrangement of a set of

I] Apart from a few alegorithms deseribing some spec- simple marks 1,2,.. 7 such that the value of tJ

‘ ialised purposcs involving permutations (see, for example, the signature telis how many marks <k are to the
Hill 1968), the gencral algorithms ull provide a common of the mark k in the arrangement.  Thus, signaturcs
facility, the systematic generation of n! arrangements of shown in panel 1 of Table 1 correspond to the arrangc

‘ n marks. It is usual to provide o procedure which, on ments of panel 2, Tompkins was already aware of
successive calls, will carry out permutations on a set of advanlages in generating a sequence of arrangements in
marks so that, after At calls, each arrangement of the ‘q convenient order’. tle describes a variation to this
marks has been generated once and once only.  In soma, end attributed to Paige.

The Computer Journal Volume 13 Number 2 May 1970
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Table 1

Generation of Hall sequence

SIGNATL H ARRANGEMENT
[|/>1311f\;
B0 00 0.1 -3 3408
g oD 1} 130N
S8 0 89 1 25734
00 0 0 3 1.8 1°% 4
g 00 0 .4 O S i
o 0 10 124 3.5
o 0B 1 3 I 24 53
i e ¥ 2| 1 25 4:3
|

Tompkins-Paige algorithm
In this algorithm modification of the signature umin
involves modulus arithmetic counting, though this time
from the least significant radix end (see Table 2). 1f ¢,
Table 2

Generation of T-P sequence

SIGNATURE ) T
tg fy A3 ‘

OOOOO: 123i4'5
54 R T (G & ] I 2 315 4
000@()|:;e!12|3!45
g 01 @0 |12.5'34
001 10 1 2 5[4 3
001@0 | % |1 2[503 4
REGs20 800 | 11z 414 3
G102 10 1 2 4(3 5
00230 | = |1 2)4i5 3
0 l«@ 0 0 | ‘1=5234
guipritet | ¥ lw s

is the most significant digit to be modified in a particular
call, taking account of a possible carry, then the arrange-
ment of marks suffers a cyclic permutation ol the & right
most marks. If the next signature obtained by a further
step involves a carry, the corresponding arrangement
will have occurred before. Tompkins calls these recur-
ring arrangements ‘useless starred j They
have to be removed by continuing with the transmission
of the carry through several digit positions, iff necessary.

This alsorithm. organised in reverse order, with count-

¢ down in the signature, was the second of the permu-
tation algorithms puhux‘hq[ in the Communications of the
A.C.M. as Algorithm 86 (Peck and Schrak, 1962). An
important improvement in the rules for cuwtruuinﬂ the
srcangement from the signature is that only the position

yermutaiions’.

of the marks is important and not their value,  As alread,
mentioned in Section 2. i one can 1’cl\-‘ on distingt
numerical marks thea no sionature is needed at all, 1

I . . a i 11 .
G, 45 We Sl Sed

v detail, the fastest algorithm of all
an improved version of Algorithm 28 (Pullips, 1967)
exploits this most efliciently,  Use of a signature should
allow the greater gencrality of any marks. The early
published ACM Algorithm 71 (Covevou and Sullivan.
[1961) sutlers the same disadvantage as the Hall algorithm
in that the marks are restricted in spite of the use of a

signature.

The Tompkins-Paige alcorithm is effectively an
example of a nested cveie method. The permutations
carried out are all eyclic permutations. though the rules
of construction are such as to minimise the length of the
cycles and thus reduce the total number of transpositions

4, Nested eycele methods

Inner—-outer method

made. There is, however, the cost of carrying up-
dating a signature and that of gencrating the w ted

starred perm witations.  This is sometimes called the
‘“iner—outer’ nested cycle method in which least work
15 done in the innermost eyeles.

Outer—inner method

Nested cycle methods have been revived more recently
by Langdoa (1967). He suggests the ase of rotational
registers Lo wp[ou cyclic generation.  Langdon’s is an
‘outer—inner’ nested cvele method in which the length
of cvele is maximised whilst the generation of starred
permut: mm.~ is minimised. The simplest way in which
to conc the method is to regard it as identical to the
Tompkins-Paige algorithm but Uxm; a Hall signature
1!«.1\\\,\.:1, by observing that there are always K successive
cycles of order K it is possible to dispense with the use
of a complicated signature. This is. therefore, a method
Ure por imposing resiviction on
But the number of trans-
positions required is larce and implementation in a high
level language is very ine [h._ method is justified
only if fast hardware rotation rcm,tem are availabte.
See also refere Launzdon (1968). Hill (1968), Ord-
Smith (Ym.;ﬂ'l:'t-a 1967).

i

requiring neither signal
the values of the mar

icient.

5. The Wells, Johnson and Trotter aigorithms
The essential distinction in these and other cJ‘nl
algorithms lies not in the construction of the signature,
which remains virtually the same as that of Tompkins-
construction of the corresponding
arrangement of marks.  The efliciency of the T-P
;u;_wnmm <_l-:;*a_-,zr‘.~, not only in the production of the
cments but in the use of cyclic permuta-
tons. l_..Lhn. one can exploit these in a special way as
Langdon suggests, the

o v involve, in the organ l n
available to most computer programmers, the suc ve

interchange of a aumber of pairs of marks.  Wells (1961)
has shown that cach arraneement of a sequence can be
generated from its predecessor by just a single such
\though ﬁ.il\,\xl\d) of simtlar con-
struction to the T-P signature. the signature of Wells
uses an element 7, of radix & but with allowed values
L(1)k rather than O(1H)k — This facilitates the des-

aioe 1 I 1 | B
Pd;'*\., it Hes 1 Lhe

starred ¢

transposition,
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criplion of an arrangement as a function of the cor-
esponding signature (see details of Section 6),  Thus the

generation of a! arrangements iavoives the
generation of just a! transpositions.  In the T-P
algorithm the number of transpositions  tends  to
(e — Dn! = 1:718x! transpositions as a2 increascs.

Johnson (l‘)(ﬂ) has shown further that a sequence of

arrangements can be found for any n in which these
transpositions are adjacent.  There may possibly be
cerlain combinatorial d«»\.unmgu in an adjacent trans-
position sequence but there is a severe penalty in the
complication of the algorithm.

Boothroyd's Computer Jowrnal Algorithm 29 is a direct
implementation of Wells” method.  In his Algorithm 30
he makes use of the fact that, for n = §, there is a very
simple pattern in the successive generation of 23 arrange-
ments of the four least significant marks. This gives a
very fast algorithm, (Boothrovd, 1967). Improved
versions of these almu.hms will be given and discussed
in Part 2. The existence of both Wells and Johnson
S\,(lULnCCb shows that tmn;po\ltlun sequences are not
unique. For n = 3 there are six distinct transposition
sequences. A sequence and its exact reverse are regarded
as the same. ACM Algorithm 115 (Trotter, 1962) is an

efficient {ransposition algorithm in which the adminis-
tration of the signature vector is particularly elegant
and which produces a bell-ringing sequence. This is
included among the six algorithms of Part 2.

6. The lexicographic algorithms

TFhe lexicc aghm sequence is perhaps the thost
natural. IL is most readi ly imag mcd by regarding the
marks as labelled A, B, C, en the sequence of
arrangements places ”\\,HL in mmmmy order.  For
example, on three marks the sequence is ABC, ACB,
BAC, BCA, CAB, CBA. It is at once clear that
the 5~‘qu,nu involves more than n! tmn.\po-siuom.
ACB - BAC requires two in this example.
A succession of ACM \Igont‘vm 87, 106, 130, 202

gradually improved the efliciency by a speed I"xclor of

60, though Algorithm 202 renu: ained more than twice as
slow as Algorithm 115. A speed comparison of ll\c‘wc
algorithms for one computer has been made by the
author, Ocd-Smith (July, 967)

Rules for the generation of the lexic memnf‘ sequence
have been given by Mok-Kong Shen (1962 and are
included here with a practical impro\'cmcul. 5:1 he case
of a lexicographic sequence there is the further problem
of determining the number of transpositions involved in
generating the full sequences of n! arrangements. A

careful examination of the lexicographic sequence shows
that generation can be described as a recursive applica-
tion of a simple sct of rules which can be obtained from
a signature of precisely Wells kind. The rules for
construction of a Wells sequence of signatures and the
formation of corresponding arrangements into a lexico-
graphic sequence read right to left are as follows:

Let ¢; with i == 2(1)n be a set of elements ol a signature
in the ugua‘ way. There is no need to use the ‘dummy’
element ¢, which would remain unity. The clements ¢,
are initially set 1. Atany moment let £ be the smallest
& for which 1, # k.

L. {D I fy =1 then 1y =L

(i) The permutation PP, is performed on the
arrangement of marks.

e i T ) 2 then deternine A 'I‘j. U.':I.'.H!;.?H_‘, (if
with fncreasing @ and all the while sctting f;
unity for i <2 k7.

(i) The permutation PP, is performed on the
arrangement of marks followed by a reversat
of the & — 1 least significant position marks.

()t =t - L

3. (i) Generation js completed when £, = n.

(ii) Reversal of all 7 marks restores the identity.

Rules | arc included within 2 but an increased
efficiency is gained in a computer program by dealing
with the case cxplicitly. Generation of the first few
arrangements in the sequence with 2 = 5 will make the
process clear and this is shown in ldble £,

Table 3 J
Generation of lexicographic sequence

F N SR § =~

L l ARRANGEMENT i e k' g

sy Ay by ) | N |

b 3ol s R e |

2. . 1.3 gl Wi T SR WS | SR 1
(% ) ‘

R O e (I s e . |

&2 i1} 3 F 2R s L
o e N R L B

L3 1 1 2.3 4T4=5 | |

Z 3 (O (8 et A I 5 5 o] S 4 : 1
(2 S0l S s }

(O RO TS ) (e SR e

It can be seen that in the lexicographic cqu nce there

is a complete generation of (& — D! arrangements of

the Grst & — 1 marks before the kth mark is involved.
Then there is a single transposition followed by a

reversal of the first & — 1 marks. This reversal, it

carried out without the single transposition, w ould have

completed generation of the first (kK — 1! arrangement ’

of marks an L_{ I lr\ud 'hf, identity.  This process
repeated & times, whilst cach of the first & mar ks occupies
the kth position, before Lhc (k -+ Dth mark is involved.
it follows that, if S, is the number of transpositions
involved in complete generation of the kth subscquence
betore the (& fith mark is involved,

‘S..k' !"(‘S'I\ i l)

If this is u:::_‘ri inductively in the calculation of S, forJ

given 7 we must add a further term. [n the final
reseneration of the ideatity with » mml\\ only a com-
"!\_[l. reversal of marks is involved (see 3(i1) above).
This only mw[\“\ an additienal le'hp(\blllu n compared
with reversal of # — | marks if 7 is eve Hence, if
S,y is truly the number of Lr: uupmmuns in\olwd n
cencration of (A )! arrangements of k-~ marks
(hen S, = (S, + Dk — 8(k) where 8(k) is one or 7ero
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evaluate Sl 10

S =0 +1B+I¥—-14 = 326

and wn gencral
Sp=(... R+ D3+D4d+...+n
—( .. . (@5 4+1D6.7 4 .s A-bn

. § e W
”!{1""1‘! 2 LR SR G ; 2)—!J

Hence S

for nn even

—» gosh 1 X !
1-583n! as n increases.

An explicit computer algorithm using these rules wias
published by the author as A.C.M. Algorithm 323 (Ord-
Smith, 1968). This algorithm shows that, although
involving 1-583 times as many transpositions as the
wells sequence, the rules for generating the sequence
are so simple that very little additional time is taken in
its construction. A cerlification and some discussion of
this algorithm has subsequently been given by Leitch in
Comm. A.C.M. (Leitch, 1969). I’hitlips has constructed
a fast lc\xcuwmphl" algorithm requiring numerical and
distinct marks and using no signature. In the case of
non-distinet marks Algorithm 28 will produce only those
distinct orderings of a higher lexicographical order
within the numerical code values of the particular data
representation.  Algorithm 323 on the other h: ind will
generate, from the initial marks ABCDE, all conven-
tionally m'“"plcd dicLimmry orderings indepéndent of
the coded numerical values of the characters.
Since Algorithm 323 always produces a! orderings some
of these will be repeated if the marks are not distinct.
Ord-Smith and Phillips algorithms comprizc two more
of the set of six fastest algorithms discussed in Part 2
(Phillips, 1967).

alphabetic
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it is interesting to note that a slightly modified lexico-

g',i';Whit_‘ cquence preserves  most of 1ts propertes,

includine that of preserving the position of the kth

clement during generation of a (A I)th arrangement

of marks, whitst demanding many fewer transpositions

in its generation.  This is obuined from the lexico-

graphic rules simply by replacing 2(ii) by:

a reversal of the &7 least significant position marks.

[he recursive formula for S, now becomes:

Si = (Spoy 4 | — Hi0k

and the number of transpositions S, > sinh 1 * =
11780t as n increases.  The aleorithm was pubftshed
by the author as A.C.M. Aleorithm 308 (Ord-Smith,
July 1967) but an improvement to copy exactly the
rules [, 2, 3 given above. with the modification to 2(ii),
slightly Hnmu\u the performance (Ord-Smith, 1969).
This algorithm is discussed further in Part 2 of this
paper.
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8. Conclusions '
Evolution of permutation algorithms has led the

production of six which are to date the fastest published.
Three of these have ap luarcu in The Computer Journal
{Boothroyd, 1967, Phllh 1967) and three in Com-
mntications of A.C.M. ("(rottcr. 1962, Ord-Smith, 1967,
Ord-Smith. 1968). Three are transposition sequence
generators and three are lexicographic.
ch of these, civen explicitly in Part 2. has been re-
written in a standard form to ensure that comparisons
u{' essential methods are, so far as is possible. compiler-
wependent.  In the process every uppmiun?{v has been
taken to implement each algorithm in the most cilic ient
manner and this has led to worthwhile improvements in
some cases.  The author is indebt ‘d to the work of Mr.
§. Boothroyd of the Hydre-Unisversity Computing
Centre, University of Tasmania in Lhis conncciion and
for discussions concerning much of the material of the
paper.
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