Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #186 Jul 30 2024 02:55:06
%S 1,1,1,3,3,1,15,15,6,1,105,105,45,10,1,945,945,420,105,15,1,10395,
%T 10395,4725,1260,210,21,1,135135,135135,62370,17325,3150,378,28,1,
%U 2027025,2027025,945945,270270,51975,6930,630,36,1,34459425,34459425,16216200,4729725,945945,135135,13860,990,45,1
%N Triangle of coefficients of Bessel polynomials (exponents in decreasing order).
%C The (reverse) Bessel polynomials P(n,x):=Sum_{m=0..n} a(n,m)*x^m, the row polynomials, called Theta_n(x) in the Grosswald reference, solve x*(d^2/dx^2)P(n,x) - 2*(x+n)*(d/dx)P(n,x) + 2*n*P(n,x) = 0.
%C With the related Sheffer associated polynomials defined by Carlitz as
%C B(0,x) = 1
%C B(1,x) = x
%C B(2,x) = x + x^2
%C B(3,x) = 3 x + 3 x^2 + x^3
%C B(4,x) = 15 x + 15 x^2 + 6 x^3 + x^4
%C ... (see Mathworld reference), then P(n,x) = 2^n * B(n,x/2) are the Sheffer polynomials described in A119274. - _Tom Copeland_, Feb 10 2008
%C Exponential Riordan array [1/sqrt(1-2x), 1-sqrt(1-2x)]. - _Paul Barry_, Jul 27 2010
%C From _Vladimir Kruchinin_, Mar 18 2011: (Start)
%C For B(n,k){...} the Bell polynomial of the second kind we have
%C B(n,k){f', f'', f''', ...} = T(n-1,k-1)*(1-2*x)^(k/2-n), where f(x) = 1-sqrt(1-2*x).
%C The expansions of the first few rows are:
%C 1/sqrt(1-2*x);
%C 1/(1-2*x)^(3/2), 1/(1-2*x);
%C 3/(1-2*x)^(5/2), 3/(1-2*x)^2, 1/(1-2*x)^(3/2);
%C 15/(1-2*x)^(7/2), 15/(1-2*x)^3, 6/(1-2*x)^(5/2), 1/(1-2*x)^2. (End)
%C Also the Bell transform of A001147 (whithout column 0 which is 1,0,0,...). For the definition of the Bell transform see A264428. - _Peter Luschny_, Jan 19 2016
%C Antidiagonals of A099174 are rows of this entry. Dividing each diagonal by its first element generates A054142. - _Tom Copeland_, Oct 04 2016
%C The row polynomials p_n(x) of A107102 are (-1)^n B_n(1-x), where B_n(x) are the modified Carlitz-Bessel polynomials above, e.g., (-1)^2 B_2(1-x) = (1-x) + (1-x)^2 = 2 - 3 x + x^2 = p_2(x). - _Tom Copeland_, Oct 10 2016
%C a(n-1,m-1) counts rooted unordered binary forests with n labeled leaves and m roots. - _David desJardins_, Feb 23 2019
%C From _Jianing Song_, Nov 29 2021: (Start)
%C The polynomials P_n(x) = Sum_{k=0..n} T(n,k)*x^k satisfy: P_n(x) - (d/dx)P_n(x) = x*P_{n-1}(x) for n >= 1.
%C {P(n,x)} are related to the Fourier transform of 1/(1+x^2)^(n+1) and x/(1+x^2)^(n+2):
%C (i) For n >= 0, real number t, we have Integral_{x=-oo..oo} exp(-i*t*x)/(1+x^2)^(n+1) dx = Pi/(2^n*n!) * P_n(|t|) * exp(-|t|);
%C (ii) For n >= 0, real number t, we have Integral_{x=-oo..oo} x*exp(-i*t*x)/(1+x^2)^(n+2) dx = Pi/(2^(n+1)*(n+1)!) * ((-t)*P_n(-|t|)) * exp(-|t|). (End)
%C Suppose that f(x) is an n-times differentiable function defined on (a,b) for 0 <= a < b <= +oo, then for n >= 1, the n-th derivative of f(sqrt(x)) on (a^2,b^2) is Sum_{k=1..n} ((-1)^(n-k)*T(n-1,k-1)*f^(k)(sqrt(x))) / (2^n*x^(n-(k/2))), where f^(k) is the k-th derivative of f. - _Jianing Song_, Nov 30 2023
%D J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
%H T. D. Noe, <a href="/A001497/b001497.txt">Rows n = 0..50 of triangle, flattened</a>
%H Peter Bala, <a href="/A035342/a035342_Bala.txt">Generalized Dobinski formulas</a>
%H Paul Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Barry1/barry97r2.html">Riordan Arrays, Orthogonal Polynomials as Moments, and Hankel Transforms</a>, J. Int. Seq. 14 (2011) # 11.2.2, chapter 8.
%H Tom Copeland, <a href="http://tcjpn.wordpress.com/2015/08/23/a-class-of-differential-operators-and-the-stirling-numbers/">A Class of Differential Operators and the Stirling Numbers</a>
%H E. Deutsch, L. Ferrari and S. Rinaldi, <a href="http://dx.doi.org/10.1016/j.aam.2004.05.002">Production Matrices</a>, Advances in Applied Mathematics, 34 (2005) pp. 101-122.
%H O. Frink and H. L. Krall, <a href="http://dx.doi.org/10.1090/S0002-9947-1949-0028473-1">A new class of orthogonal polynomials</a>, Trans. Amer. Math. Soc. 65,100-115, 1945. [From _Roger L. Bagula_, Feb 15 2009]
%H E. Grosswald, <a href="http://dx.doi.org/10.1007/BFb0063135">Bessel Polynomials</a>, Lecture Notes Math. vol. 698 1978 p. 18.
%H Milan Janjic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Janjic/janjic22.html">Some classes of numbers and derivatives</a>, JIS 12 (2009) #09.8.3.
%H Wolfdieter Lang, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/LANG/lang.html">On generalizations of Stirling number triangles</a>, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
%H B. Leclerc, <a href="http://dx.doi.org/10.1016/0012-365X(95)00138-M">Powers of staircase Schur functions and symmetric analogues of Bessel polynomials</a>, Discrete Math., 153 (1996), 213-227.
%H Robert S. Maier, <a href="https://arxiv.org/abs/2308.10332">Boson Operator Ordering Identities from Generalized Stirling and Eulerian Numbers</a>, arXiv:2308.10332 [math.CO], 2023. See p. 19.
%H Toufik Mansour, Matthias Schork and Mark Shattuck, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL15/Schork/schork2.html">The Generalized Stirling and Bell Numbers Revisited</a>, Journal of Integer Sequences, Vol. 15 (2012), #12.8.3.
%H Toufik Mansour, Matthias Schork and Mark Shattuck, <a href="http://dx.doi.org/10.1016/j.aml.2012.02.009">On the Stirling numbers associated with the meromorphic Weyl algebra</a>, Applied Mathematics Letters, Volume 25, Issue 11, November 2012, Pages 1767-1771. - From _N. J. A. Sloane_, Sep 15 2012
%H W. Mlotkowski and A. Romanowicz, <a href="http://www.math.uni.wroc.pl/~pms/files/33.2/Article/33.2.19.pdf">A family of sequences of binomial type</a>, Probability and Mathematical Statistics, Vol. 33, Fasc. 2 (2013), pp. 401-408.
%H Mathias Pétréolle and Alan D. Sokal, <a href="https://arxiv.org/abs/1907.02645">Lattice paths and branched continued fractions. II. Multivariate Lah polynomials and Lah symmetric functions</a>, arXiv:1907.02645 [math.CO], 2019.
%H Feng Qi and Bai-Ni Guo, <a href="https://doi.org/10.1002/9781119414421.ch5">"Some Properties and Generalizations of the Catalan, Fuss, and Fuss-Catalan Numbers"</a>, Mathematical Analysis and Applications : Selected Topics (2018), Wiley, Ch. 5, 101-133.
%H Feng Qi, X.-T. Shi and F.-F. Liu, <a href="https://www.researchgate.net/publication/280884520">Several formulas for special values of the Bell polynomials of the second kind and applications</a>, Preprint 2015.
%H Alexander Stoimenow, <a href="https://doi.org/10.1016/S0012-365X(99)00347-7">On the number of chord diagrams</a>, Discr. Math. 218 (2000), 209-233. Lemma 2.2.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BesselPolynomial.html">Bessel Polynomial</a>
%H <a href="/index/Be#Bessel">Index entries for sequences related to Bessel functions or polynomials</a>
%F a(n, m) = (2*n-m)!/(m!*(n-m)!*2^(n-m)) if n >= m >= 0 else 0 (from Grosswald, p. 7).
%F a(n, m)= 0, n<m; a(n, -1) := 0; a(0, 0)= 1; a(n, m) = (2*n-m-1)*a(n-1, m) + a(n-1, m-1), n >= m >= 0 (from Grosswald p. 23, (19)).
%F E.g.f. for m-th column: ((1-sqrt(1-2*x))^m)/(m!*sqrt(1-2*x)).
%F G.f.: 1/(1-xy-x/(1-xy-2x/(1-xy-3x/(1-xy-4x/(1-.... (continued fraction). - _Paul Barry_, Jan 29 2009
%F T(n,k) = if(k<=n, C(2n-k,2(n-k))*(2(n-k)-1)!!,0) = if(k<=n, C(2n-k,2(n-k))*A001147(n-k),0). - _Paul Barry_, Mar 18 2011
%F Row polynomials for n>=1 are given by 1/t*D^n(exp(x*t)) evaluated at x = 0, where D is the operator 1/(1-x)*d/dx. - _Peter Bala_, Nov 25 2011
%F The matrix product A039683*A008277 gives a signed version of this triangle. Dobinski-type formula for the row polynomials: R(n,x) = (-1)^n*exp(x)*Sum_{k = 0..inf} k*(k-2)*(k-4)*...*(k-2*(n-1))*(-x)^k/k!. Cf. A122850. - _Peter Bala_, Jun 23 2014
%e Triangle begins
%e 1,
%e 1, 1,
%e 3, 3, 1,
%e 15, 15, 6, 1,
%e 105, 105, 45, 10, 1,
%e 945, 945, 420, 105, 15, 1,
%e 10395, 10395, 4725, 1260, 210, 21, 1,
%e 135135, 135135, 62370, 17325, 3150, 378, 28, 1,
%e 2027025, 2027025, 945945, 270270, 51975, 6930, 630, 36, 1
%e Production matrix begins
%e 1, 1,
%e 2, 2, 1,
%e 6, 6, 3, 1,
%e 24, 24, 12, 4, 1,
%e 120, 120, 60, 20, 5, 1,
%e 720, 720, 360, 120, 30, 6, 1,
%e 5040, 5040, 2520, 840, 210, 42, 7, 1,
%e 40320, 40320, 20160, 6720, 1680, 336, 56, 8, 1,
%e 362880, 362880, 181440, 60480, 15120, 3024, 504, 72, 9, 1
%e This is the exponential Riordan array A094587, or [1/(1-x),x], beheaded.
%e - _Paul Barry_, Mar 18 2011
%p f := proc(n) option remember; if n <=1 then (1+x)^n else expand((2*n-1)*x*f(n-1)+f(n-2)); fi; end;
%p row := n -> seq(coeff(f(n), x, n - k), k = 0..n): seq(row(n), n = 0..9);
%t m = 9; Flatten[ Table[(n + k)!/(2^k*k!*(n - k)!), {n, 0, m}, {k, n, 0, -1}]] (* _Jean-François Alcover_, Sep 20 2011 *)
%t y[n_, x_] := Sqrt[2/(Pi*x)]*E^(1/x)*BesselK[-n-1/2, 1/x]; t[n_, k_] := Coefficient[y[n, x], x, k]; Table[t[n, k], {n, 0, 9}, {k, n, 0, -1}] // Flatten (* _Jean-François Alcover_, Mar 01 2013 *)
%o (PARI) T(k, n) = if(n>k||k<0||n<0,0,(2*k-n)!/(n!*(k-n)!*2^(k-n))) /* _Ralf Stephan_ */
%o (PARI) {T(n, k) = if( k<0 || k>n, 0, binomial(n, k)*(2*n-k)!/2^(n-k)/n!)}; /* _Michael Somos_, Oct 03 2006 */
%o (Haskell)
%o a001497 n k = a001497_tabl !! n !! k
%o a001497_row n = a001497_tabl !! n
%o a001497_tabl = [1] : f [1] 1 where
%o f xs z = ys : f ys (z + 2) where
%o ys = zipWith (+) ([0] ++ xs) (zipWith (*) [z, z-1 ..] (xs ++ [0]))
%o -- _Reinhard Zumkeller_, Jul 11 2014
%o (Magma) /* As triangle */ [[Factorial(2*n-k)/(Factorial(k)*Factorial(n-k)*2^(n-k)): k in [0..n]]: n in [0.. 15]]; // _Vincenzo Librandi_, Aug 12 2015
%o (Sage) # uses[bell_matrix from A264428]
%o # Adds a column 1,0,0,0, ... at the left side of the triangle.
%o bell_matrix(lambda n: A001147(n), 9) # _Peter Luschny_, Jan 19 2016
%Y Reflected version of A001498 which is considered the main entry.
%Y Other versions of this same triangle are given in A144299, A111924 and A100861.
%Y Row sums give A001515. a(n, 0)= A001147(n) (double factorials).
%Y Cf. A104556 (matrix inverse). A039683, A122850.
%Y Cf. A245066 (central terms).
%Y Cf. A054142, A099174, A107102.
%K nonn,tabl,nice
%O 0,4
%A _N. J. A. Sloane_