The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001474 w such that w^3+x^3+y^3+z^3=0, w>|x|>|y|>|z|, is soluble. 0

%I

%S 6,9,12,16,19,20,25,27,28,29,34,39,40,41,44,46,51,53,54,55,58,60,67,

%T 69,70,71,72,75,76,80,81,82,84,85,87,88,89,90,93,94,96,97,98,99,102,

%U 103,105,108,109,110,111,113,115,116,120,121,122,123,126,127,129,132,134,137,139

%N w such that w^3+x^3+y^3+z^3=0, w>|x|>|y|>|z|, is soluble.

%D J. Leech, Some solutions of Diophantine equations, Proc. Camb. Phil. Soc., 53 (1957), 778-780, see p. 799.

%D H. W. Richmond, On integers which satisfy ..., Trans. Camb. Phil. Soc., 22 (1920), 389-403, see p. 402.

%t sol[w_] := Reap[ Do[ If[ GCD[w, x, y, z] == 1 && w > Abs[x] > Abs[y] > Abs[z] && w^3 + x^3 + y^3 + z^3 == 0, Print[{w, x, y, z}]; Sow[{w, x, y, z}]; Break[]], {x, -w+1, -1}, {y, x+1, -1}, {z, y+1, -y-1}]][[2]]; Select[ Range[140], sol[#] =!= {} & ] (* _Jean-François Alcover_, Feb 24 2012 *)

%Y Cf. A001235.

%K nonn,nice

%O 1,1

%A _N. J. A. Sloane_.

%E More terms from _David W. Wilson_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 8 20:32 EDT 2021. Contains 343668 sequences. (Running on oeis4.)