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A Note on Fermat’s Last Theorem and

+4 A N srcatrtie Nr1--q ~ e
tne WiCrsCiuilc L Umpers

By C. B. HASELGROVE

object of this paper is to establish a connection between
+'s Last Theorem and some numbers which are of the same
vne as the Mersenne Numl

sers but which are more general in nature.
le of these numbers, which we shall call the Associated Merseine
smbers, can be found at the end of this paper. The method that
<hall use is the classical method of the theory of equations

which we shall apply to the theorv of congruences. We shall

i ol
2iliar with the elementary theory of
as given in works such as Hardy and Wright: A#n
to the Theory of Numbers. Almost all the theorems
of the theory of equations may be taken over into the theory of
nces by merely replacing the equality signs by congrucnce
I  the theorem that any symmetric
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In particular, this is true ol
function of the roots, with integral coefficients, can be expressed
. Solvaomial function of the coefficients with integral coefficients.
S-o0f of this result in the theory of congruences is the same
y of equations except for the replacement of all

the equality signs by congruence signs.
It is well known that if p is a prime of the form (nr + 1) the

uence:

(D
I
.
o
o
5]

x* = 1 (mod 2) i 5 v (x)
has 7 distinct roots which are the residues which 7* powers may
take (mod p). For by a theorem due to Fermat we have
o' = g = 1 (mod p) provided that p does not divide a. Forifx
s = Toot of the congruence (I) the congruence 4" =% has at most
Also the congruence (I) has at most’# roots. If it has
han 7 Toots we arrive at a contradiction since @ can take nr
different values (mod p). Let the roots of the congruence (I) be
" . %, Then, as we have stated above, any polynomial
stric function of the x; with integral coefficients can be
;ressed as a polynomial function of the coefficients with integral
cocficients. This function of the coefficients is the same as the
corresponding symmetric function of the roots of the equation

abe== T g fr in A (2)
which we shall suppose has roots z;, 2 . - - » where 2z, = 1. Thus
we have in particular

TT1 i 1 S e TT7 - i w

M +x—0=0(E+y—1 @mdp) .. (3)
where 4 and 7 both run irom I to n on both sides of the equation.
4s the factors of the leit-hand side of (3) are the possible values of

L2¢

Soaus
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x + 9" — 1 (mod p), the

it is possible to solve the congruence
o L o7 = 1 (mod . »
& A Bl \“.O\l;).) 4 ok K“)

A

is that 4 should divide
which is an integer whic

ht-hand side of the equation (3)

This is the neces-

ndition that the congruence

()
b LB 3
For if we can solve (4)
Also, if we can sol
so that az = 1 (mod $) and then
aence ( 5) by @, Hence, iz, y

16}
i w4 \9)

(nr + 1) then either p divides xyx
ides xyzo \n). It now remains to deter-
mine the factors of the numbers o().
Consider the product

aplr) =l (gf +2—1) 1=01L..8—1 .. (7)
Then ay(») is an integer since the product on the right-hand side
of (7) is a symmetric iunction of the roots of the equation (2).
Further, if # is & prime we have!:

-2
% | (;Y,k + Z; — I)
R =1
through all the zy = 1. If =1

Hence the

since the product of those terms with z; =TI 0orz; =1 is I.

=5 T o
1nus 7n—1
lot)  — 1 L -
omn) = 1 a".-\/;) R . .. (b)
K- X
Also for composite # we see that a,(n) d Thus by study-

ing the properties of {liec numbers a; (n), which we shall call the
Associaied Mersenne Nuinbers, we can obtain information about

the numbers o(n). Suppose that the roots of the equation

FLz—1=0 5 wa . ()

where £ > 2. Then since [ (b—=2)=0"—1

) where j runs from 1 to k& .. .. (10)

f o !

This expresses a(n) as a symmetric function of the roots of the
equation -\y). We shall now state some results that can be deduced

20

from (x0); proofs will not be gi)
of the Galois Imaginaries. For
I Ifn divides m then a(n
(II) 1f p and ¢ are primes a:

PK—I where K is the lowest co
(III) If p is a prime then p

of ak(n) (mod p), as a function ¢
(IV) There is a linear recurs

a function of n. For example
() ay(n) =2"— L a,(n)

— ay(n—1) +a

(i) a5(n) = as(n—1) — a(n-

—
e
o
S
(3]
—
~
<
-

The result (I} is a trivial cd
the quotient ax(m)/ax(n) is cleas
of the roots of (g) and so is &

The linear recurrence for
multiplying out the product
the sum of the ' powers ¢
regarded as the roots of an eq
is shown in books on algebra
satisfies a linear recurrence :
the equation.

The results (IT) and (III) m
Galois Imaginaries which e:
P#lz—1=0 (mod ). Tl
between the numbers a(n)
satisfy the relation (II) with /

As the sign of the number
we have tabulated them as if
is something to be said for m!
are necessarily positive. Th
using the linear recurrence fG
(III) form a very useful check
There are several very intere:
ay(») which there i1s no spa
ain) =ayn) if Rl=1 (moc
study under what condition
not the time at his d15posa1 t
lations necessary. It is poss
a useful test for the primality
rclated numbers. The numb
this purpose by Lucas (ref.
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v and sufficient condition that

L

‘mod ) * b o
hand side of the equation (3),
-note by ¢(n). This is the neces-

theg®ngruence - :
(o O&” :- ot (5)

: by . For if we can solve (4)
: z=1. Also, if we can sclve
5 that @z = 1 (mod ) and thcn
ruence (5) by a”. Hence, if z,
1 that:

r T
- .. .. .. \Y)

» + 1) then either p divides xyz

zo(1). It now remains to deter-
Faay

1WIE

) e T (7).
product on the right-hand s

~ the roots of the cquation (2).

ide

;'". el I).

gh all the zz # 1. If =1,
;e the product equals
pith z; =T orz =115 L.

_‘.. 1<
) i o % (8).
) QL!A #iecs 0'.(7:). Thus by study-
s ay(n), which we shall cal the

> can obtain information about
che roots of the equation

= o4 { o (9)
Then since Il (6 — z) =6"— I
hins from X to & .. 2 e 1)
atric function of the roots of the

some results tha: can be deduced

(xo); proofs will not be O'z ven here as they involve the theory
of the Galois Imaginaries. For an account of this theory see ref. 1.

(1) If = divides i then ay(n) divides ay(m).
(s and ¢ are primes and if p divides ak(q) "1en g divides

—1 where K is the lowest common multiple of I, 2, . . . &.

II1) If $ is a prime then p divides a;(p*—1), :md the residues
of ay(n) (mod p), as a function of n, Tepeat with period p¥—1.
(IV) There is a linear recurrence formula for a(n) r regarded as

%. For example, we have:

R S
a iunction o1

) a(n) =2"— 1. an) =2a@#H—1)+ L
i) a(n) = — G{n—1) + ay(n—2) + 1 — (—1)"
(i) ag(n) = ay(n—1) — ay{n—2) + 3a5(n— 3) — ag(n—4)

+ ay(n—3) — az(n—>6).

The result (I) is a trivial consequence of the formula (xo), for
the quotient ay( ,N//..x\r,, is clearly a symmetric polynomial function
of the roots of (g) and so is an integer.

The linear recurrence formulae may easily be proved by
lying out the product ior « (y) This expresses ay(n) as
of the »** powers of certain quantmes which may be
the roots of an equation with integral coefficients. It

books on algebra (e.g. ref. z) that such an expression
satisfes a linear recurrence relation with the same coefficients as

b 1) and (11I) may easily be proved by means of the
Galois Imaginaries which enable us to solve the congruence

4Lz —1=0 (mod p). The relation (II) shows the analogy
between the numbers 4 ,,/ and the Mersenne Numbers which

iT
T

satisfy the relation (II) with k=1, K =1
ion of the numbers’ ay(#) is irrelevant to the subject,
we have tabulated them as if tuby were positive numbers. There
is something to be said for modifying the definitions so that they
ily positive. The tables have been constructed by
using the linear recurrence formulae. The relations (I}, (II) and
(11I) form a very useful check on the accuracy of the calculations.
There are several ver interesting relations between the numbers
ax(n) which u.ue no space to discuss here. For example,
i y It would be very interesting to
$) is prime, but the author has
arry out any of the laborious calcu-
possibke that the numbers may provide

necessar

.Mion necessary.
o useful test for the kaau_y of the Mersenne Numbers and other
clated numbers. The numbears ay(n) have already been used or
this purpose by Lucas (ref. 3).
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2, By D.
¥ ELECTRONICS has only recen
TapiE OF TEE ASSOCIATED MERSENNE NUMBERS machines. 1t was first used 3
5 g Wy S b 7 111§egrator and calculator mad
5 ¥ 5 g this was under CO[nSU’UCUOﬂ i
T 5 g = an equivalent per;ormance Ve
- 12 incorporated high-speed mern
' 2 ; 3 constructed in various places
d i 3 memories usually consisting
B = 5 cathode-ray tubes.
g s A E.D.S.A.C. (the electroni
7 b 9 ;s a small machine of this
q <3 2 Jaboratory under the direct
: ;; “ consider briefly its mode of
10 1/21 ;g The machine has five ps
% 2047 199 67 (a) A memory unit,
12 4053 320 117 (b) A computor ot arithr
i3 8191 321 13T &) & control unit,
T4 ) 841 192 (d) An input unit, and
o, 13064 34T (¢) An output unit (see
:; :20:;) 459 (a) Numbers, expressed
18 97 013 form of supersonic bursts 0
VX 3779 999 in a tube. The waves are
=¥ 9349 1493 vibrating quartz crystal, &
™ < L are converted into electric
EX ; J to generaie waves again.
Remark on toe Motion © £ T e 1 Fenl many balls in the air at tl
AJLAVAL Vs AW Ao 111 LG} LV » 3 x & ot .
~ J juggle with 576 digits, and €

of 16 tubes, it can hold 1¢
these numbers ca be rea

() The computor cons
accumulator. Numbers fr
subtracted from, the nur
together and added to ¢
accumulator. In additior
replace any number in the

At first 1 steadily precess,
This later changes to nutation—

A thing you'll find by computation—
4nd now please let the matter drop.

Signed,
T
i1Uuls,
A mathematic
Top.
P § vy £iapthar £ - T
P.S.—For further reference, Lamb,

e

The latter part of his Dynam.
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elementary operations of
be speedily carried out.

(¢j The control ““look
held in the memory, and
then executes. 1he ordes
control number, which i



