> 88 ent (PL2 4 265 73] Fortran IV for an IBM 360/65. It produced all 48 H-flats of 6 points in about 3 seconds. For the 383 H-flats of 7 points, the run time was about 6 minutes. Although many shortcuts could have been employed from the information thus far gathered, it was decided, perhaps unwisely, to just "grind out" the H-flats for 8 points. Since it was obvious that a single run would not suffice, a restart procedure was added to the program. The total run time for the 1020 H-flats of 8 points was slightly over 10 hours! One graph of 21 lines had 4880 ALIASes! ## Number of Hamiltonian Graphs Table 1 presents the number of graphs of p points and q lines, for p equal to 6, 7, and 8. The body of the table indicates the total number of unique graphs, separated into connected and disconnected. A column indicates, for each q, the number of connected graphs that are Hamiltonian. Harary's excellent book on graph theory (3) contains a table (p. 214) displaying the number of graphs of p \leq 9; but the column totals for p8 and p9 are in error, although the numbers for each q are apparently correct. The total number of graphs for p8 should be 12,346 and for p9 should be 274,668. Cadogan (4), using the Möbius Function, presented a table of the number of connected graphs for $p \le 9$. (In his table, p8, qll should be 814, not 813.) Also, a little-known report by Osterweil (5), who enumerated non-separable graphs on fewer than ten points, presented the number of connected graphs through eleven points: p9 p10 12,005,368 p11 1,018,997,864 N649 MAM der poi 10 in H = Hamthain grees # 3216 = NIII.5 The Number of Graphs of p points and q lines | Р | | 6 | | | 7 | | | | 8 | | | | |--|-----------------------|---|------------|------------|--------------|------|------------|---|--|---|---|---| | ď | | | | | | | | | | | | | | | d | С | Н | t_ | d | C | H | t | d | C | H | t | | 0
1
2
3
4
5
6
7
8
9
10
11
12
13
11
14
15
16
17
18
19
22
19
22
22
23
24
25
26
27
27
28
28
28
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 1 1 2 5 9 9 8 5 2 1 1 | 6
13
19
22
20
14
9
5
2
1 | TUGHT36056 | con
Ham | nect
ilto | ed g | rap
n g | 1
1
2
5
10
21
41
65
97
131
148
131
97
65
41
21
10
5
2
1
1 | 1
1
2
5
11
24
56
92
132
166
177
166
143
103
42
22
10
5
2 | 23
89
236
486
814
1169
1454
1575
1290
970
658
400
220
114
56
24
11
5 | 1
3
19
82
256
553
1068
1045
324
546
335
204
110
55
24
111
52
1 | 1
1
2
5
111
24
56
115
221
402
663
980
1312
1557
1312
980
663
402
221
115
56
24
11
56
24 | | 41 | ↓ 1 | 12 | 48 | 156 | 191 | 853 | 383 | 1044 | 1229 | 1111 | 7 602 | 0 12346 | Table 1 ## References - (1) Dolch, J. P., NAMEs and ALIASes of Graphs, Proc. 3rd S-E Conf. Combinatorics, Graph Theory, and Computing, Florida Atlantic University, 175-194. - (2) Read, R. C., Graph Theory Algorithms, in Graph Theory and Its Applications, Academic Press, New York, 1970, 51-78. - (3) Harary, F., <u>Graph Theory</u>, Addison-Wesley, Reading, Mass., 1969. - (4) Cadogan, C. C., The Möbius Function and Connected Graphs, J. Combinatorial Theory (Ser. B) 11 (1971), 193-200. - (5) Osterweil, L., Enumeration of Non-Separable Graphs on Fewer than Ten Points, Report #CU-CS-pp5-72, Sept. 1972, Department of Computer Science, University of Colorado, Boulder, Colorado.