login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

One-half the number of permutations of length n with exactly 3 rising or falling successions.
(Formerly M4550 N1934)
8

%I M4550 N1934 #23 Dec 19 2021 09:54:41

%S 0,0,0,0,1,8,60,444,3599,32484,325322,3582600,43029621,559774736,

%T 7841128936,117668021988,1883347579515,32026067455084,576605574327174,

%U 10957672400252944,219190037987444577,4603645435776504120,101292568208941883236,2329975164242735146316

%N One-half the number of permutations of length n with exactly 3 rising or falling successions.

%C (1/2) times number of permutations of 12...n such that exactly 3 of the following occur: 12, 23, ..., (n-1)n, 21, 32, ..., n(n-1).

%D F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Alois P. Heinz, <a href="/A001267/b001267.txt">Table of n, a(n) for n = 0..200</a>

%H J. Riordan, <a href="http://www.jstor.org/stable/2238176">A recurrence for permutations without rising or falling successions</a>, Ann. Math. Statist. 36 (1965), 708-710.

%F Coefficient of t^3 in S[n](t) defined in A002464, divided by 2.

%F a(n) ~ 2/(3*exp(2)) * n!. - _Vaclav Kotesovec_, Aug 10 2013

%F Recurrence: (n-4)*(2*n^6 - 52*n^5 + 557*n^4 - 3136*n^3 + 9740*n^2 - 15727*n + 10242)*a(n) = + (n-4)*(2*n^7 - 50*n^6 + 511*n^5 - 2693*n^4 + 7450*n^3 - 9041*n^2 - 157*n + 6666)*a(n-1) - (2*n^8 - 58*n^7 + 735*n^6 - 5289*n^5 + 23430*n^4 - 64575*n^3 + 106105*n^2 - 92312*n + 30900)*a(n-2) - (2*n^7 - 54*n^6 + 615*n^5 - 3795*n^4 + 13554*n^3 - 27681*n^2 + 29473*n - 12330)*(n-2)*a(n-3) + (2*n^6 - 40*n^5 + 327*n^4 - 1388*n^3 + 3184*n^2 - 3675*n + 1626)*(n-2)^2*a(n-4). - _Vaclav Kotesovec_, Aug 10 2013

%p S:= proc(n) option remember; `if`(n<4, [1, 1, 2*t, 4*t+2*t^2]

%p [n+1], expand((n+1-t)*S(n-1) -(1-t)*(n-2+3*t)*S(n-2)

%p -(1-t)^2*(n-5+t)*S(n-3) +(1-t)^3*(n-3)*S(n-4)))

%p end:

%p a:= n-> coeff(S(n), t, 3)/2:

%p seq(a(n), n=0..25); # _Alois P. Heinz_, Jan 11 2013

%t S[n_] := S[n] = If[n<4, {1, 1, 2*t, 4*t+2*t^2}[[n+1]], Expand[(n+1-t)*S[n-1] - (1-t)*(n-2+3*t)*S[n-2] - (1-t)^2*(n-5+t)*S[n-3] + (1-t)^3*(n-3)*S[n-4]]]; a[n_] := Coefficient[S[n], t, 3]/2; Table[a[n], {n, 0, 25}] (* _Jean-François Alcover_, Mar 11 2014, after _Alois P. Heinz_ *)

%Y Cf. A002464, A000130, A086852. Equals A086854/2. A diagonal of A010028.

%K nonn

%O 0,6

%A _N. J. A. Sloane_