login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001014 Sixth powers: a(n) = n^6.
(Formerly M5330 N2318)
153

%I M5330 N2318

%S 0,1,64,729,4096,15625,46656,117649,262144,531441,1000000,1771561,

%T 2985984,4826809,7529536,11390625,16777216,24137569,34012224,47045881,

%U 64000000,85766121,113379904,148035889,191102976,244140625,308915776,387420489,481890304

%N Sixth powers: a(n) = n^6.

%C Numbers both square and cubic. - _Patrick De Geest_

%C Totally multiplicative sequence with a(p) = p^6 for prime p. - _Jaroslav Krizek_, Nov 01 2009

%C Numbers n for which order of torsion subgroup t of the elliptic curve y^2=x^3+n is t=6. - _Artur Jasinski_, Jun 30 2010

%C Besides the first term, this sequence is the denominator of ((Pi)^6)/945 = 1 + 1/64 + 1/729 + 1/4096 + 1/15625 + 1/46656 + ... - _Mohammad K. Azarian_, Nov 01 2011

%C The binomial transform yields A056468. The inverse binomial transform yields the (finite) 0, 1, 62, 540, ..., 720, the 6th row in A019538 and A131689. - _R. J. Mathar_, Jan 16 2013

%C For n > 0, a(n) is the largest number k such that k + n^3 divides k^2 + n^3. - _Derek Orr_, Oct 01 2014

%D Granino A. Korn and Theresa M.Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, New York (1968), p. 982.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Franklin T. Adams-Watters, <a href="/A001014/b001014.txt">Table of n, a(n) for n = 0..500</a>

%H Henry Bottomley, <a href="/A001014/a001014.gif">Illustration of initial terms</a>

%H J. Gebel, <a href="/A001014/a001014.txt">Integer points on Mordell curves</a> [Cached copy, after the original web site tnt.math.se.tmu.ac.jp was shut down in 2017]

%H Richard J. Mathar, <a href="https://arxiv.org/abs/1703.01677">Construction of Bhaskara pairs</a>, arXiv:1703.01677 [math.NT], 2017.

%H Simon Plouffe, <a href="http://www.lacim.uqam.ca/%7Eplouffe/articles/MasterThesis.pdf">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992.

%H Simon Plouffe, <a href="http://www.lacim.uqam.ca/%7Eplouffe/articles/FonctionsGeneratrices.pdf">1031 Generating Functions and Conjectures</a>, Université du Québec à Montréal, 1992.

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7, -21, 35, -35, 21, -7, 1).

%F a(n) = A123866(n) + 1 = A002604(n) - 1.

%F G.f. -x*(1+x)*(x^4+56*x^3+246*x^2+56*x+1) / (x-1)^7. - _Simon Plouffe_ in his 1992 dissertation

%F Multiplicative with a(p^e) = p^(6e). - _David W. Wilson_, Aug 01 2001

%F E.g.f.: (x + 31x^2 + 90x^3 + 65x^4 + 15x^5 + x^6)*exp(x). Generally, the e.g.f. for n^m is Sum_{k=1..m} A008277(m,k)*x^k*exp(x). - _Geoffrey Critzer_, Aug 25 2013

%F From _Ant King_, Sep 23 2013: (Start)

%F Signature {7, -21, 35, -35, 21, -7, 1}.

%F a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) + 720. (End)

%F a(n) == 1 (mod 7) if gcd(n, 7) = 1, otherwise a(n) == 0 (mod 7). See A109720. - _Jake Lawrence_, May 28 2016

%F From _Ilya Gutkovskiy_, Jul 06 2016: (Start)

%F Dirichlet g.f.: zeta(s-6).

%F Sum_{n>=1} 1/a(n) = Pi^6/945 = A013664. (End)

%p {seq( i^3, i = 0..15900)} intersect {seq(k^2, k= 0..15900)}; # _Zerinvary Lajos_, Apr 26 2008

%p with(finance):seq(add(growingperpetuity(n^5,2,1),k=1..n),n=0..26); # _Zerinvary Lajos_, Dec 22 2008

%t Table[n^6, {n, 0, 40}] (* _Vladimir Joseph Stephan Orlovsky_, Feb 19 2010 *)

%o (Haskell)

%o a001014 n = a001014_list !! n

%o a001014_list = map (^ 6) [0..] -- _Reinhard Zumkeller_, Dec 04 2011

%o (Maxima) A001014(n):=n^6$

%o makelist(A001014(n),n,0,30); /* _Martin Ettl_, Nov 05 2012 */

%o (PARI) a(n)=n^6 \\ _Charles R Greathouse IV_, Sep 24 2015

%Y Subsequence of A201217.

%Y Cf. A000540 (partial sums), A022522 (first differences).

%Y Intersection of A000290 and A000578.

%K nonn,easy,mult

%O 0,3

%A _N. J. A. Sloane_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 18 21:04 EST 2018. Contains 317331 sequences. (Running on oeis4.)