Computing the leading asymptotic of A001003

Starting from the OGF

$$
D(z)=\frac{1+z-\sqrt{z^{2}-6 z+1}}{4 z}
$$

we require

$$
D_{n}=-\left[z^{n+1}\right] \frac{1}{4} \sqrt{z^{2}-6 z+1}=-\frac{1}{4} \frac{1}{n+1}\left[z^{n}\right] \frac{z-3}{\sqrt{z^{2}-6 z+1}}
$$

We start with

$$
\left[z^{n}\right] \frac{1}{\sqrt{z^{2}-6 z+1}}=\left[z^{n}\right] \frac{1}{\sqrt{(z-(3+2 \sqrt{2}))(z-(3-2 \sqrt{2}))}}
$$

The singularity that is closest to the origin is in the second square root term and we write

$$
\begin{gathered}
\frac{1}{(3-2 \sqrt{2})^{n}}(3-2 \sqrt{2})^{n}\left[z^{n}\right] \frac{1}{\sqrt{(z-(3+2 \sqrt{2}))(z-(3-2 \sqrt{2}))}} \\
=(3+2 \sqrt{2})^{n}\left[z^{n}\right] \frac{1}{\sqrt{(z(3-2 \sqrt{2})-(3+2 \sqrt{2}))(z(3-2 \sqrt{2})-(3-2 \sqrt{2}))}} \\
=\frac{(3+2 \sqrt{2})^{n}}{\sqrt{3-2 \sqrt{2}}}\left[z^{n}\right] \frac{1}{\sqrt{(3+2 \sqrt{2})-z(3-2 \sqrt{2}))(1-z)}} .
\end{gathered}
$$

Extracting the dominant asymptotics as on page 180 of Wilf's *generatingfunctionology* we get

$$
\begin{gathered}
(3+2 \sqrt{2})^{n+1 / 2}\binom{n+1 / 2-1}{n} \frac{1}{\sqrt{4 \sqrt{2}}}=\frac{1+\sqrt{2}}{2^{5 / 4}}(3+2 \sqrt{2})^{n}\binom{n-1 / 2}{n} \\
=\frac{1+\sqrt{2}}{2^{5 / 4}}(3+2 \sqrt{2})^{n}(-1)^{n}\binom{-1 / 2}{n}=\frac{1+\sqrt{2}}{2^{5 / 4}}(3+2 \sqrt{2})^{n}\left[w^{n}\right] \frac{1}{\sqrt{1-w}} \\
=\frac{1+\sqrt{2}}{2^{5 / 4}}(3+2 \sqrt{2})^{n} \frac{1}{4^{n}}\binom{2 n}{n} .
\end{gathered}
$$

Collecting the two contributions we find

$$
(3+2 \sqrt{2})^{n} \frac{1}{4^{n}}\binom{2 n}{n}\left[-3+\frac{4}{3+2 \sqrt{2}} \frac{n^{2}}{(2 n)(2 n-1)}\right]
$$

The square bracketed constant is asymptotic to

$$
-3+\frac{1}{3+2 \sqrt{2}}=-3+3-2 \sqrt{2}=-2^{3 / 2}
$$

It follows that the first term of the expansion is

$$
\frac{1}{4} \frac{1}{n+1} 2^{3 / 2} \frac{1+\sqrt{2}}{2^{5 / 4}}(3+2 \sqrt{2})^{n} \frac{1}{4^{n}}\binom{2 n}{n}
$$

Recall the central binomial coefficient has $\binom{2 n}{n} \sim \frac{4^{n}}{\sqrt{\pi n}}$ so that this becomes

$$
\frac{1}{4} \frac{1}{n+1} 2^{3 / 2} \frac{1+\sqrt{2}}{2^{5 / 4}}(3+2 \sqrt{2})^{n} \frac{1}{\sqrt{\pi n}} .
$$

The asymptotic of $1 /(n+1)$ is $1 / n-1 / n^{2}+\cdots$ and $2+5 / 4-3 / 2=7 / 4$ so that we have at last

$$
D_{n} \sim \frac{1+\sqrt{2}}{\sqrt{\pi} 2^{7 / 4}}(3+2 \sqrt{2})^{n} \frac{1}{n^{3 / 2}}
$$

This was [math.stackexchange.com problem 4703369](https://math.stackexchange.com/questions/4703369/).

