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ON THE ENUMERATION OF POLYGONS

S. W. GOLOMB anp L. R. WELCH, S
Jet Propulsion Laboratory, California Institute of Technology

{ L. Introduction. Given 7 equally spaced points on a circle, one may pick a
/ first vertex in % ways, a second vertex in (n—1) ways, . . ., an nth vertex in 1
‘way, and return to the starting point in 1 way, for a total of 7! polygonal paths.
Two polygonal paths which differ only in starting point or orientation will be
called identical polygons. If, besides possible difference in starting point and
orientation, two polygons differ only by a plane rotation, they will be termed
equivalent. If, in addition to possible differences of these three types, two poly-
gons differ only by a reflection through some axis, they will be called similar.
Using a combinatorial formula of Pélya, it has been possible to obtain explicit
expressions for the number of classes E(n) of equivalent n-gons, and for the
number of classes S(n) of similar 7-gons. ' :

+ 2. The formulas: Let # exceed 2. It is convenient to separate the even from
the odd values of #. In all cases, summation is extended over the divisors d of
n, and ¢(a) is Euler’s totient function.
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These results are tabulated for n=11 m Table I, and the actual polygons are
; .shown for n <7 in Table II.

TaBLE 1. The humber of equivalent and similar n-gons for n £11.
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n E(n) S(n)

3 1 1

4 2 2
{ 5 4 4
; 6 14 12
i 7 54 39
i 8 332 202
i 9 2,246 1,219
10 18,264 9,468
; 11 164,950 83,435
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TaBLE I1. All poly gons with <7 si

ides, with their symmetry groups. The groups
I'and C; correspond to polygo

ns with reflections which are not rotations.
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3. Deriving the formulas. The basic combinatorial formula [1], [2] for the
number C of equivalence classes established in a set S by the operation of a
group G of order N is

) _ 1 Z 1o, Bumrdel Lomma
aeG

where I(g) is the number of objects s in S left fixed by the operator g in G, i.e.
for which g(s) =s.
The original set S for present purposes is the set of all #! polygonal paths.

The “identity group” contains 27z elements, for #>2, based on the n starting -

points and two orientations of path. Whenever e is the unity element of the
group G in (5), I(e) =total size of set S. For the “identity group,” none of the
polygonal paths remain invariant under operatxons other than the unity. Hence
the trivial result

1 1
(6) : In) = — (nl) = — (n — 1)L
. 2n 2
The “equivalence group” is the direct product of the identity group with

the group of cyclic permutations of the #-gon, and has (2n)(n) =2n® eiements.
For the purposes of equation (5), only the 7 cycling operators contribute to the

sum, provided that polygons which are changed into identical polygons are

counted in I(g). Cycling by an angle 6, =2%k/n, 1 £k <n, leaves one or more
polygons fixed. The set of invariant polygons under this rotation clearly depends
only on the greatest common divisor (, k) =d. Thus

o E(n) = — Z 16) = =3 qs( d)z(ed),

k—l 2n? din

~ where ¢ is Euler’s function, and 8, also depends on 7.

To obtain 7(f:), we must determine the number of n-gons left fixed by the
rotation 2wd/n. Unless d=n/2 (in the case of even n), all mvanant n-gons for
0; can be constructed as follows:

Number vertices consecutively from 1 to #, and distinguish residue classes
modulo d. A first vertex is picked in any of n ways. The next vertex is picked

“arbitrarily, but outside the residue class of the first point—thus, in (n—n/d)
ways. The next vertex is picked from a new residue class, in (n—2n/d) ways, and
this process continues until all d residue classes are represented once. This “first
loop” of the polygon can thus be formed in

Do) (452 -
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ways. The first point on the “second loop” must belong to the same residue
class as the first point on the “first loop,” and can be chosen in d(n/d) ways.
The future history of this polygon is now completely determined by the pattern
within each loop, and the transition from one loop to the next. This transition
does not lead to an early termination of the polygon, since it was restricted to
be one of the ¢(n/d) nondegenerate possibilities. (See particularly the second
through fifth hexagons in Table I1.)
For the case of odd #, this completes the derivation of

. ) , o
(1 Eoaa(n) = e dlznqs (F)dx(g) )

For even #, there is also the possibility that a rotation by 7 will reproduce
the polygon with its orientation reversed. This can happen as follows:

There are 7/2 pairs of antipodal points. A diameter can thus be drawn in
n/2 locations. A choice of one member from each antipodal pair can be made in

2% ways. The first members can be arranged sequentially in (n/2)! ways.

This leads to 2%%(n/2)(n/2)! ways of drawing a polygon which inverts upon it-
sell. (See especially the sixth hexagon in Table I1.) Hence the formula

@) Eeven(n) = %( Z o ( %)-d!-(%)d + 2»/2(;> (—2)1)

The “similarity group” contains reflections as well as rotations, for a total of
4n® operations. Hence the relations

1 1
(8) Soad(#) = — Eoqa(n) + —-n-I(Ry),
2 4n?

where R, is the operation of reflection in any one of the # axes of the polygon,
and ' ‘

1 : 1 /n n
9 Seven =_Eaven —— —'I R’ —IR” ) '
© ) = 5 Eeul) + (2 1R + 2 1xe1),
where Ry and RJ’ refer to reflection in the vertex diagonals and edge diagonals,

respectively.
To compute I(R,), there are n ways to pick a starting point. With respect

_ to the symmetry axis, there is one solitary vertex and (n—1)/2 pair of matched

vertices. There are 29/ wavs to select first members of the pairs; and
((n—1)/2)! ways to order these first members. Hence :

(10). IR = nawon, (n; 1)!,

Substituting (10) into (8) yields the expression
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By an analogous counting process,

3)

(11) I(RY) = n'2"’2-(%— 1)1
and
(12) - IR = n-2"’2‘1-(%)!-

Equations (9), (11), (12), and (2) combine to yield

@ Sealn) = (ﬂzj (d) (%)d+2"/2ﬂ7%®'(%)!>'
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ON THE THEORY OF LOBELL ON TRANSFORMATION
OF SURFACES

E. K. HSIAO, University of Chengchow, China

1. Introduction. Frank L&bell [1] has given a discussion of the theory of
transformation of surfaces. He pointed out that, for certain cases as the nature
of the problem requires, the consideration of the mixed fundamental magnitudes
of a pair of surfaces is opportune. But he did not give any example for this. In
the present paper we propose to give such an example.

2. Parallel surfaces. A surface .S’ which is at a constant distance along the
normal from another surface S is said to be parallel to .S. As the constant dis-
tance may be chosen arbitrarily, the number of such parallel surfaces is infinite.
Parallel surfaces have the property that the normais to the two surfaces at cor-
responding points are parallel [2]. This property agrees with the common
requirement of some of the important formulas such as (12), (13), (15b), (15¢),
of Lobell. Therefore we may use these formulas to investigate parallel surfaces
and so give our illustrative examples of Lobell’s theory, as follows.

If x is the current point on the surface S, ¢ the unit normal to that surface,
and « the constant distance, the corresponding point on the parallel surface S’ is






