login
This site is supported by donations to The OEIS Foundation.

 

Logo

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000879 Number of primes < prime(n)^2. 18
2, 4, 9, 15, 30, 39, 61, 72, 99, 146, 162, 219, 263, 283, 329, 409, 487, 519, 609, 675, 705, 811, 886, 1000, 1163, 1252, 1294, 1381, 1423, 1523, 1877, 1976, 2141, 2190, 2489, 2547, 2729, 2915, 3043, 3241, 3436, 3512, 3868, 3945, 4089, 4164, 4627, 5106 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(n) is the least index i such that A052180(i) = prime(n). - Labos Elemer, May 14 2003

Number of primes determined at the n-th step of the sieve of Eratosthenes. - Jean-Christophe Hervé, Oct 21 2013

There are only 3 squares in the current data: 4, 9, 7745089. - Michel Marcus, Apr 07 2018

There are no other squares up to a(780000). - Giovanni Resta, Apr 09 2018

LINKS

Donovan Johnson, Table of n, a(n) for n = 1..10000

FORMULA

a(n) = A000720(A001248(n)). - Michel Marcus, Apr 07 2018

MATHEMATICA

PrimePi[Prime[Range[50]]^2] (* Harvey P. Dale, Jan 16 2013 *)

PROG

(PARI) a(n) = primepi(prime(n)^2); \\ Michel Marcus, Oct 28 2013

CROSSREFS

Cf. A050216 (first differences), A089609, A052180, A000720, A001248, A000885, A054270 (primes of rank a(n))

Sequence in context: A266647 A085683 A083270 * A262232 A218912 A230868

Adjacent sequences:  A000876 A000877 A000878 * A000880 A000881 A000882

KEYWORD

nonn

AUTHOR

gandalf(AT)hrn.office.ssi.net (James D. Ausfahl)

EXTENSIONS

Edited by Ralf Stephan, Aug 24 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 23 05:43 EDT 2018. Contains 315273 sequences. (Running on oeis4.)