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The Number of topologies on n points. f*‘lC75if5
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Abstract: Upper and lower bounds are obtained for the number of

all topologies and the number of T,-topologies on n points. Various

conjectures regarding the magnitudes cf these numbers are also

stated.

§ 1 ‘Introduction:

Let p(n) be the total number 6f distinct (possibly hecmeomorphic)
topologies on n points and let po{n) be tﬁe number c¢f Tg-topologies
on n points. In this paper, I have tried to obtain reasonable
upper and lower bounds for p(n) and po(n). These are obtained and
discussed in the next section. Clearly, the bounds are unsatis-
factory but seem to be much better than what is known (compare
[2]). I show that p(n) and po(n) vary like eCHZ. This is in
sharp.contrast to By(notaticn determined historically), the number
of Borel-fields on n elements, since B, = 0(ecn2) for any c>0.

See [5].

I consider the case of only finite cardinals n in this paper. If
e is any infinite cardinal, it is known that p{q) '= 22" (see
Sierpinski (4] pp. 82) but I do not know of any discussion of the

number of TO, Tl;...,topologies. ‘For a finite cardinal, of course,

there is oh]y one T], or better separated topclogy.

After the present article was completed, Mr. S. Johansen attracted

my éttention to the recently published article of Evans, Harary and
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Lynn "On the Computing enumeration of ffnite topologies"” in
Communications cf ACM Vol. 10, No. 5, May, 1967. The present
paper has much overlap with that article. My méthods, however,
seem more straight-forward. The values of p(n) and pO(n) for
n=5,6,7 in the table in the next section are taken from the
above-mentioned paper. The other values for n=1 to 4 were
obtained by systematic enumeration following the discussion
developed in the next section and tally with the figures ir the
aone—mentioned paper. See also [2].

I should like to thank Mr. Richard Piotrowski for various helpful
numerical calculations and Professcr de Bruijn for sevefa] pene-
trating observétions.
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Let S be a finite set containing n distinct elements labelled say,
for ccnvenience, by the integers 1,2,... n. O0f all the possible
equivalent ways of defining a topology on S, I shall choose the
one by means of closure operators satisfying Kuratowski's postu-
lates. Because of the finiteness of S, a closure operator is
uniquely and completely determined by a function F from S to P(S),
the set of all subsets of S, which satisfies the following
propertieé:

(a) for all xeS, xeF(x) and (b) if yeF(x)'then F(y)c F(x).

If now F(A), for Ac:S,.fs defined to be U{F(x): xeA} then F satis-
fies the usual closure postulates viz. F(g) = 4 (4 = empty set),
F(AN DA, F(F(A))=F(A), F(AUB) = F(A)UF(B). The problem then is

to count the number p(n) of distinct functions F satisfying (a)






and (b) above. The function F induces a Tg-topology (definition:
given x,y, x ¥ y, -} an open set conteaining x and not containing y
or vice versa) if and only if given x,y,x ¥ y, either x¢ F(y) or

y ¢ F(x) or toth. Let po(r) be the number ¢f TC-topo1ogies on S.

If we write now x Ry if x € F(y), it is immediately verified that
R defines a reflexive and transitive relation on S. Conversely,
given a reflexive and transitive relation R on S, the function
F(x) = {y|ly R x} is a mapping ¢f S to P(S) satisfying (a) ang (5)
above. Hence p(n) is the same as the number of reflexive and
transitive relations on S. Similarly it follows that po(n) is

the number of reflexive, anti-symmetric and transitive relation-

ships orn S, i.e. the number of partial orders cn S. This latter

fact is we]i-known see e.g. Birkhoff [i] pp. 14.
It is useful at this point to note that there is g simple rela-
tionship between p(n) and po(n) viz.

p(n) an, ko (K)

~
nmo~Mm>s
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where @ K - the number of distinct partitions of S into k disjoint,
3

non-empty subsets. E.g. an,1=1, an,2= 2"']—],... a 1. To prove

n,n
this formula, one can argue as follows. Given a reflexive and
transitive R, define x m y if y R x and x R Y- This is clearly an
equivalence fe]ationship and on the partition induced by this

equivalence, R induces a partial order. From here, the formula

follows immediately. Explicit formulae for a, g can be written






down but only the sum B, = g ap,k will be needéd. Then Bﬁs are the
sc-called exponential numbe;s (also called Bell numbers or Euler
numbers) end equal the number of distinct partitions of S (or
equivalence relationships on S or aigebras of sets on S). An

estimate of Bn will be mentioned iater. For a recent report on the

Bﬁs see Rota [3].

I shall now cbtain upper and lower bounds for po(n). From these,

bounds for p(n) will be deduced.

I shall use the familiar device of Hasse diagrams slightly elabo-
rated, for getting information about po(n), the number of partial

oraers on S. Given a partial order <, define for xeS,
d(x) = max {K| X} <Xp<an <Xy <X},

Clearly (the inequality will not be used later) T<d(x)<|F(x)],

where [A]| = cardinal number of A and F is the function introduced
before which induces the To—topo]ogy which gives the partial order.
If d(x) = d(y), then x must be unrelated to y. Now define & I b

(a immediately belew b) if a<b but for no ¢, a<c<b. Clearly, if

a I b, then d(b)>d(a) + 1. Both strict equality cr irequality are
possib]e.- Further, given xeS, d(x)>2 there is a yeS such that

y I x, d(y) = d{(x) - 1. Form now the Hasse diagram as follows.

Let m = max {d(x)lan},‘limin. Arrarge the points of S in m rows,
the x with d(x) = k, 1<k<m, being put in the kth now. Join x with

y if and’only if x I yory I x. Such a diagram is fg]]y character-

ized by the following description. Points are arranged in m non-empty






rows, points of the same row are never Joined, each point of the ith
row, i>2, is jcined to at least one point of the (i-1)st row and a
point ¢f the ith row can be joined to a point of the Jth row, j>i,
if and only if there js nc path going through intermediate rows
which jcins them. Let hm(n) be thg number ¢f such m-rowec Hasse

diagrams. Then clearly,

n
Polr) = = hy(n)
. m=1
It is easy to see that h](n) = 1, hy(n) ="1. On the other hand,
n-1
hy(n) = rE] (2" ran)r

It is easily seen, by considering the maximum term in the sum for

h,(n) that |

2 2
hy(n)>Cc-2" /4'([

NS

1) 0<C<l

Hence
2/4(

Po(n)>ka(n)>ce 2"/ (1))

It is useless to try te improve the lower bound for pg(n) by this
method by censidering hy(n), h4(n) etc. since they are all easily
proved to be _9(2@n ) o<a<k%. The further major contributions seem

to come from hk(n)(") where k(n) is a suitable function of n.

I shall now obtain scme upper bounds fcr po(n). FEn easy one is
n(n-1)

3 2

and anti-symmetric relationships or S. A better one will now be

» cerived from the fact that this is the rnumber of reflexive

derived by using Hasse diagrams. The number of Hasse diagrams is

clearly less than n! times the total number of undirected graphs






or n points which is zh(né1l. The multipTicaticn by nt is

necessary tc sllow for arranging the peints in different rows

n{n=1) . Numerical evidence, (see

2 2
n(r-1
table later) seems tc indicate that pU(n)> Z‘LBQ“l"fOV n>1 but I

("cclours"). Hence po(n)<n1‘

have nct been atle tc come even close to this.

Finally, the formula for p(n) in terms of po(n) gives us, thet
po(n)<p(n)<nt. zﬂiﬁéll-Bn n>1

fhe general crders of magnitude of p(n) and po(n) will now te

expressed in the following staterent which is merely a8 weak de-

duction from the akbove.

Theorem:

1) <pg(n)<p(n)<n, ok By (1) 0<C<l.

2 Lte
lim pg(n)/2' 2 € < v p(n) 2t 2" = 0

N> N-—>co

for any ¢>0.

an2

The last statement follows from the fact that Bn= ole ) for any

a>0 (See Szekeres and Binet [5]). Of course, what one should Tike
. . . . (O.+€)rl2 .
to have is that there is a constant o>0 such that 2 is tco
-e)n? .
large and 2(e=en 440 small for po(n) and p(n). It is to be
strengly suspected that a=% is the right answer and actually the

following table suggestS the even stronger conjecture that for n>1

n{r-1) n(n—])

'(n-I)-z Z <Pgn)<p(n)<nts o777






n Po(n) p(n) i

] ] 1 1
2 3 : 2
3 19 29 C s
4 | 219 355 15
5 4,23 6,942 52
6 130,023 209,527 203
7 6,122,559 9,535,241 877

As a check for the accuracy of the figures in the table, note that
pO(n) is always an cad number and p(n) has the sane parity as B,
This follows by noting that if R is a partial order re]et1onsh1p
oﬁ S, then the cpposite partial order R' (i.e. x R' y iff y R x)
is distinct frem R ir all cases except for the triviel partial
order where x Ry iff x = y. Hence py(n) = 1 (med 2) and so

p(n) = % an,k:Bn (med 2). Following @ conjeciure of the author,
Professg;]de Bruijn has shown that B, s even if and only if

n=2 (mod 3). This shcws that p(n) is even if h=2 (mod 3) ang odd
otherwise. See [5] for re“erences to tables of By- I should
like to point out that the orders of magnitude for the nor-hcmeo-
morphic topolcgies are still in the same neighbourhood as

20.n2

9
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p(n) or po(n) (viz. <a<%) since they differ at most by a

factor of nt.

It is easy to see that p(n)>np(n 1) as also that po(n)>np0(n 1).
‘Both these fo]]ow (and can be considerably improved) by the fcllow-

ing argument, given for To-topo1og1es. Given n peints, choose any

L






one point (in n ways) and define its closure to be the whole set.
For the rest of the points choose any To-topo1ogy. The whole still
gives a TO—topo1ogy and po(n)>np0(n 1) is proved. Similarly for

Wi 9777

It also follows from p(rn)=

p(n)} Hence
Po(n)__._

_)

~
i ™M= S~
— -

opkpo(k) that lim {p(n)-pg(n)} = +=.

n

heth oo Pp(n) ooy o . . .
hkether Alg pOT—T- ¢cr not, I do not know. I suspect that the

1imit is finite and between 1 ancd 2.
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