¢

| ¥}

C

The situation becomes more complicated when ¢ > 2.
We are unable to give as exact results as obtained for
¢t = 2, but use of the principle of inclusion and exclusion
enables us to develop a method which yields the asymp-
totic expansion of F (n,t). Here we get the probability
that a random permutation of 1,2, - - - ,n has no runs
of length ¢, ¢ > 2, approaches 1 as n— .

2. Permutations With No Runs of Length Two

It is convenient to work with the function G (n,¢) =
(1/n) F (n,t). If we consider two permutations as equiva-
lent, if they are cyclic shifts of each other, then G (n,?)
enumerates the number of equivalence classes of permu-
tations containing no permutation with a run of length ¢.

We claim that the number of classes of cyclically
equivalent permutations containing precisely k runs of
length 2, 1=k=n— 2, is () G(n — k, 2). For there are
(r) ways of choosing which k runs occur, namely, the ()
ways of choosing k elements from the set {12,23,
34, ,n1}. Each choice partitions the set {1,2, - - - ,n}
into n — k subsets, each subset representing symbols
which must remain adjacent. For instance, the choice
12,23,56 when n =7 gives the partition 123,4,56, 7.
The number of cyclically inequivalent ways of rearrang-
ing the parts of the partition without introducing any new
runs is clearly G (n — k,2), and the assertion follows.

When k =n — 1 the argument breaks down, as the
partition 123 - - - n introduces the extra run nl. If we
define G (0,t) = 1, then the above result is also valid for
k = n. Hence, we obtain the recurrence relation

G2 =mn—1)— [é(;:)c;(n— k,2) — njl (1)

The —n term appears to cancel the term (7) G(1,2) =
If we put G = G (k,2), then Eq. (1) can be written sym-
bolically as

n—Dl+n=01+G)r, (2)

where exponents are changed to subscripts after expand-
ing the right side by the binomial theorem. Eq. (2) pro-
vides a rapid method for calculating G (n,2). Table 2
gives the values for 1=n=15.

We now define the generating functions

® 2
G(x): gc(‘:'!’ )xn’
F(x) = %F(Z!’z)x",

’75"/
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Table 2. Values of G(n,2) = 1/nF(n,2)

=

G (n, 2)

w|l=|=]o|—

36

229

1,625

13, 208

120, 288
1,214,673

13, 496, 897
162,744,944
2,128,047, 988
29, 943, 053, 061

w|N|o|Gg|b|jwiN|—

0

)

—_

—_
N

p—
w

N

—\ 757

[&]

Clearly F (x) =1+ xG’ (x). We compute

G (x)e” = (i G(",Z)xn><§ x_'”)

moeml

—log(l —x) +xe” + 1.

Hence
G(x)=e?[l—log(l—x)]+x, (3)

and

F(x):1+xG’(x)=xe"<lix+log(1—x))+x+1.
From Eq. (3) we get

(=1)'x

v=(2 )+ 2‘)“

B 0 n-1 ( l)k -
"E(kzoki k)) +2

)

n=0

G (n,2)
n!
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Equating coeficients gives
G (n,2) = nl En: i-l—(—l)” n=1
SR T 3 ’

and

3
[
et
=
3

F (n,2) =nG(n,2) = nl +n(—1)", n=1.
&

kKl n—k

Egs. (4) and (5) can also be obtained from the principle of inclusion and exclusion (Ref. 3, Ch. 3 or Ref. 5, Ch. 2).

We now use Eq. (5) to obtain the asymptotic expansion of F (n,2)/n!. We have

R e S
BT ) )
AN ORRO S OB L
HORRONE =

“EFe-n "2 w K LTS
n
l <k>r+1
logn  fr+1 n-1 Jr+t © (—l)k F n’
= —_—
I R ey s R P S A )
n
1— n -+ 1\7+?
(logn) (logn)™+*  npr+tep Yo 1 n n’
n—logn (ogm! ' ™ n+ D1 1_(n+l> ERCE)
n

4)

()

o

The next to last term is obtained by using the fact that the error in truncating an alternating series of decreasing terms J

tending to zero is less than the first term omitted.
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Q Clearly

log {logm)™* _
now n — logn

Moreover, using the estimate x! > (x/e)

lim ™" _ lim ne

now (logn)l ~ n-w (logn/e)' "

— lim ,(r+3) 10gn-(10gn)?

n—

=0.
Next
) 1 B (n + 1)7+1 .
lim " n
no (n + 1)! 1 n+1
—
B lim (n _l_ 1)r+l . nr+1
C aow (n + !
=0.
Finally
lim ™ —
Ny
If we put
© kr(_l)k
b,=2
k=0 k!

then we have just established the asymptotic expansion

nl =0 n’

The numbers b, can be computed as follows: First

_ = (—1)F —l
bo B k?o k! B e’
We now have
0 kr+1(__1)k
br+1 =

k§0 kl

B ) kr(_l)k

= 2% D
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0 (k + 1)r(_1)k+1
2 m

Il

Il
|
Ms
faxy

or symbolically
brt=—(1+Db).

This recurrence relation shows that b, is always an integer
multiple of 1/e, say b, = (1/¢€) a,.

If we write

then similarly to the derivation of Eq. (3) we get

b,

7l

Ch@e =3 o= ().

Hence

b(x)=e .
If ¢, denotes the number of partitions of a set of r ele-
ments, then it is well known (Ref. 4) that

) c,
3 —x, =e” .
rl

Hence the a, are the so-called Blissard or umbral inverses
of the set partition function ¢, (Ref. 3, p. 27).

=0

The above results are summarized by the following
theorem, which also gives the values of a, for 0 =r=20.

Theorem 1. Let F (n,2) be the number of permutations

of 1,2, - -+ ,n with no runs of length 2 and put
G(n,2) = (1/n) F (n,2). Then

@ nt(m-1l=3 (Z)c(k,z).

k=0
(ii) §G(k’z)x":e'”[l—log(l—x)]+x,
e K
= F(k,2 x
EO (kl )x"zxe'”[l_x—|—log(1—x)]+x+l.
2) = 1”71 —If _=n +n(—=1)" 1
(iii) F(n,2)=n E(,Tn~k n(—1)"nz=1.
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y Fm2 10 1.1 1 3 9
(iv) nl Ne—(l_n2+n3+n4 n® nf
9 50 267 413 2180 17731
A
50533 | 110176 = 1966797 . 9938669
- n13 + n14 + nl5 + n16
8638718 278475061 2540956509
+ ni7 - nis - nto
S ),
n
where
o i K — p-ert1
—~rf=e .
2K

In particular, the probability that a random permuta-

tion of 1,2, - - - ,n has no runs of length 2 is
F(n,2
@—)—=0.36788 s asn—>o0.
n! e

3. An Asymptotic Formula for Arbitrary

The main result of this section is the following theorem:

Theorem 2. Let F (n, t) be the number of permutations

of 1,2, - - - ,n with no runs of length ¢. Then
Fn3 1 31 141 1
n—lﬁlhnignz_ 3$+0<n4>’
Fnd) | 1 5 91 /1
nl n?  nd 2 nt ns /)’

while for fixed ¢ > 4

F(n,t)_1 1

(t—2)¢t+1) 1
nl nt-2 2 nt-1

_tE+D)EE—-5—10) 1 1
24 nt nte

Proof. The proof is based on the principle of inclusion
and exclusion referred to earlier. Let w (i, 82, © + * ,1,) be

212

the number of permutations of 1,2, - - - ,n with runs of ‘)

length ¢ beginning on the symbols iy, i, - - - i, Let
W(r) = Zw(iy,i, * - - ,i,), where the sum is taken over
all subsets {i,,i,, - - ,i,} of {1,2, - - - ,n} with r ele-
ments. It follows from the principle of inclusion and
exclusion that

nl = W(1) +W(©Q) — W(3) <F(nt)
<nl=W(L) +W(2) — W(3) + W(4).

If we can show that

W (4)/n! = 0( ,1+1>,
n
then

F (n,t) —q_ W (1) n w2 w(@
nl n! nl n!

Fo (i),

Then to complete the proof of Theorem 2 we need only
calculate W (1), W (2), and W (3).

We now show that for ¢ > 2,

W(r)/nl =0 <nT+1ﬁ> .

This will be seen to be false for t = 2, which explains
why this case was handled separately. For each subset
T = {iyi, - ,i,} of S= {1,2, - - - ,n}, we associate
a partition of n as follows: the set T partitions S into
subsets of symbols which must remain adjacent in order
for a permutation to have runs of length ¢ beginning on
is,42, * * * ,1,. The number of elements in each subset is
taken to be a term in the partition of n.

Example: Letn=15t=3 T = {2,5,7,8,12}. Then S
is partitioned into the subsets {1}, {2,3,4},(5,6,7,8,9,10},
{11}, {12,13,14}, {15}. This yields the partition 15 = 1 +
1+14+3+3+6.

Let n=>b,+2b,+ - - - + nb, be the partition of n
induced by T. Observe that b,>n — rt, with equality
holding when each element of T belongs to a distinct sub-
set of the partition of S. Hence, there are at most (%) dis-
tinct partitions of S induced by all subsets T with r ele-
ments, since we can assume that r elements of T are
chosen from a specified set of size rt.

J
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wa;-u of rearranging these subsets to give different permu-
tations of S. Hence

W(r)4(rt)maxn2(’zl bi_l)! 6
O\ blby - - - ba ©)

where the maximum is taken over all partitions of n which
can arise from subsets T of order r.

Now if b, + -+ - + b, = b, then
_Ebién—bt—(r—b)-i-b,

since b, =b, = -+ - =b;_, = 0 and there are r runs of
length t. Hence, from Eq. (6) we get

" bt+2—r—2) - (n—bt+b—r1)
2) h(n—bt+2b~r)

Note that

F(n,t)él_WT(l)furo(%),

so that this simple estimate suffices to show that the proba-
bility that a random permutation has no runs of length
t > 2 approaches 1 as n— 0.

Two runs of length ¢t can occur in one of two ways:

(i) one run of length ¢ + 1, ¢ +2, - - -, 2t — L, or (ii) two
disjoint runs of length ¢. In the first case, one run of length

¢ + i can begin on any one of n symbols, leaving (n —t — i)l
ways of permuting the n — ¢ remaining symbols and n ways
of shifting each permutation cyclically. In the second case,
there are n(n — 2t + 1)/2 ways of choosing two disjoint
ruf® M length t, (n — 2t + 1)! ways of permuting the

' n —Yt+ 1 subsets that remain when one run is fixed in
place, and n ways of shifting each permutation cyclically.
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Hence
t-1 2n—2t+1
W(@)=Zn*(n—t—i) +%(n—2t+ nt,
i=1
n=>9%+1.

Three runs of length ¢ can occur in one of three ways:
(i) one run of length ¢ +2, t+3, - - -, 3t — 2, (ii) one
run of length ¢ and one of length ¢ +1,¢+2, - - -, 2t —1,
or (iii) three disjoint runs of length t. In the first case, as
before, one run of length ¢ + i can begin on any one of n
symbols, leaving (n — t — i) ways of permuting the n — ¢
remaining symbols and n ways of shitting each permuta-
tion cyclically. Now, however, we get an additional factor
of i — 1, as there are i — 1 places on which the middle run
can begin. In the second case, there are n (n — 2¢ + 1 — {)
ways of choosing two disjoint runs of length ¢ and ¢+ i,
(n — 2t + 1 —1i)l ways of permuting the n — 2+ 1 — i
subsets that remain when one run is fixed in place, and
n ways of shifting each permutation cyclically. In the
third case, there are n(n — 3t + 2) (n — 3¢t + 1)/6 ways
of choosing three disjoint runs of length ¢, (n — 3¢ + 2)!
ways of permuting the n — 3¢ + 2 subsets that remain
when one run is fixed in place, and n ways of s} g
each permutation cyclically. |

Hence

2t-2

WE) = 3 (i—Dn(n—t—i)

t-1
3 —2+1—d)(n—2+1— i)

i=1

n*(n—3t+2)(n—3t+ 1)

N 6

(n—3t+2)1,

n=3¢t+1,

We leave it to the intrepid reader to expand
1 —=W(1)/nl + W (2)/n! — W (3)/n! in a power series in
1/n and verify that the terms given in the statement of
the theorem are correct. With this the proof of Theorem 2
is complete.

It is evident that the above procedure can be con d
to give the asymptotic expansion of F(n,t)/n! to ny
desired accuracy.
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