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Self-Complementary Symmetry
Types of Boolean Functions*

This note is concerned with those
Boolean functions (switching functions) that
are of the same symmetry type as their
binary complements. Such symmetry types
are called self-complementary.

The Pélya-Slepian enumeration formula
for symmetry types is modified to permit
one to count the number of such self-comple-
mentary symmetry types for an arbitrary
number of variables, n. Using the modified
formula, this number has been computed
for n=1, 2, 3, 4, and 5. For n=1, 2, and 3,
all meutral symmetry types (those with
2n—1 Strye” entries in the truth table) are
self-complementary. When # is greater than
three, this relation breaks downand the self-
complementary types become increasingly
rare.

A network interpretation is given of
Slepian’s classification of variable transfor-
mations into e-cycles and o-cycles which
sheds light on the problem of classifying
Boolean functions and relates this problem
to sequential network theory.

Boolean functions, f(x;- - - x.) and
g(x + + + %), are said to belong to the same
symmetry type if there exists some variable
transformation (permutation and/or comple-
mentation of some or all of the variables,
¥, -+ - ,x%:) which changes f into g
Tables!'? of symmetry types exist through
n=4 and the numbers of distinct symmetry
types have been calculated® up to n=6.

Suppose that f=f(x1---xx) is a
Boolean function of # variables and that
F=J(x1 « - - x4) is its binary complement. In
order for f and f to belong to the same sym-
metry type, it is clearly necessary that f
(and, hence, also f) have value I for 2% of
the 27 possible input combinations, and have
value 0 for the other 2#~! combinations. Such
functions (having equal occurrences of
value I and value 0) have been called
neutral* and they have important properties
in relation to the study of sequential net-
works.4

Consideration of the possible symmetry
types of neutral functions readily shows
that for =1, 2, and 3, all neutral functions
belong to the same symmetry type as their
respective binary complements, and, hence
are self-complementary. The familiar parity
functions are all of this type. Other exam-
ples of self-complementary symmetry types
are shown in Fig. 1. It should not be thought,
however, that neutral symmetry types are
invariably self-complementary. Of the 74
neutral symmetry types in four variables,
42 turn out to be self-complementary while
the remaining 32 occur in complementary
pairs (see Higgonet and Grea?). Examples
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Fig. 1—Examples of self-complementary neutral
symmetry types.

Fig. 2—Karnaugh diagrams of some non-self-comple-
mentary neutral symmetry types; # =4.

are shown in Fig. 2 by means of Karnaugh
diagrams.®

The question thus arises as to what hap-
pens for n>4, How does the class of neutral
functions divide into self-complementary
(SC) and non-self-complementary (NSC)
types? Do both SC and NSC types exist
for all values of #>4? These questions have
been partially answered by an extension of
Slepian’s methods.?

The basic tool in this investigation is the
formula (Pélya,® Slepian?)

ik =
KA(C)
e

N, =

for the number of distinct symmetry types
of Boolean functions in % (or fewer) vari-
ables. Here the summation is extended over
all classes C of equivalent operations (vari-
able transformations), with n¢ the number
of operations in class C while K(C) is the
number of cycles into which the vertices of
the n-dimensional hypercube are permuted
by an operation of class C. Thus, 2K©
gives the number of Boolean functions in-
variant under an operation of class C. For
a more detailed explanation of these con-
cepts, the reader should refer to Slepian’s
paper.?

As pointed out by Golomb,” (1) is an
instance of a very general expression for the
number of transitivity sets into which a
space S is decomposed by the operations of
a finite transformation group G acting on
the points of this space. Two points, s and s',
are in the same transitivity set if, and only
if, some operation ¢ of G transforms s into s/,
de., if {(s)=s". Let I({) be the number of
points of S which are left fixed by operation
¢ of the group G. Then, the number of transi-
tivity sets is given by

1
N=m%67(1) (2)

where 7(G) is the order of the group G.
In Slepian’s application of this formula,
S is the set of all 22" m-variable Boolean
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functions, G is the n-dimensional hypercube
group of order #!27, and the transitivity sets
are the symmetry-type classes of Boolean
functions. The summation in (1) is carried
out, not element by element [as in (2)], but
in terms of classes of equivalent, 7.e., conju-
gate,® operations. All operations of a given
conjugacy class C have similar properties. In
particular, they have the same value of
I(¢) =2K©,

In order to determine the number of self-
complementary neutral types in 7 variables,
let .S be the space consisting of all (un-
ordered) pairs (f, f) of complementary func-
tions of n variables. There are obviously
221 such pairs. The group G of variable
transformations is, as before, the hypercube
group of order »!2%, consisting of all permu-
tations and/or complementations of vari-
ables. One may define two pairs, (f, f) and
(g, ), in S to be equivalent under G if some
operation in G transforms f into either g or g.
This relation between pairs, which is
readily seen to be an equivalance relation
(i.e., reflexive, symmetric and transitive)
then partitions .S into classes of equivalent
pairs. These classes of pairs will be referred
to as pair symmetry types. Thus, pair (f, fis
of the same pair symmetry type as (g, ) if,
and only if, f is of the same (ordinary) sym-
metry type as either g or §. For example, the
pair consisting of the even parity and odd
parity functions forms a pair symmetry
type with only one member. Likewise, the
pair (fo, f1), where fo=0 and fi=1, also
forms such a class. Most pair classes,”how-
ever, will contain several distinct pairs.

Let N,®® and N, be the numbers of
SC and NSC symmetry types, respectively,
of m-variable Boolean functions. The SC
types form N, pair symmetry types, while
the NSC types form N, /2 pair symmetry
types; hence, the number of pair types is

Pn = AT"(sc) + %N,.(“‘“’), (3)
while the number of (ordinary) symmetry
types is

= N, N"(DEC), (4)

Applying formula (2) to this situation,
one finds that

22 A a0, )

P, =
nl2" ;e

where J(t) is the number of pairs (f, 7) left
invariant by operation ¢ of the group G.
Now, a pair (f, f) is left invariant by ¢ if, and
only if, either

1) {(f) = f, or
2y 1) =1

Let Ji(¢) and Ju(t) be the numbers of pairs
corresponding to cases 1) and 2), respec-
tively. Thus, J(2)=J1(8)+T2(t).

Suppose that the operation ¢ permutes
the 2" vertices of the » cube into K(C)
cycles, where C is the operation class to
which ¢ belongs. There are 2€© ways in
which these vertices can be labelled with
0's and 1's so that the labelling is constant
over each cycle. Each such labeling defines
a Boolean function invariant under opera-
tion ¢. Hence, Ji(t) =2X@=1 since there are
half as many pairs as there are functions.

& All operations conjugate to a given operation

are é)f the form afa—! where a is an arbitrary operation
of G.



On the other hand, Jux(¢) counts the
number of pairs (f, f) such that ¢(f)=7.
Any such function f corresponds to a label-
ing of the vertices of the # cube with 0's
and 1’s alternating as one proceeds around
any cycle. Clearly, this is possible only if
each cycle is of even length. In that case,
there are two possible labelings for each
cycle, and the labelings are independent
from cycle to cycle. Hence, for all cycles
even, there are 2K© distinct labelings
meeting the requirement #(f)=f; if some
cycles are of odd length, there are no such
labelings.

Let the operation classes C be separated
into two categories—those classes C’ whose
operations permute the vertices of the =
cube into some odd cycles, and those classes
C” whose operations result in all even
cycles. We then have

J(t) = 2K@r,
J(0) = 25,

for ¢ in class C’, and
for ¢ in class C”. (6)

By combining (5) and (6), we obtain
P,= Nn(sc) -+ -;_ Nn(usc)

-9 1 D 2E@ g oD 2K(C")nc,,:| ;
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But, by virtue of (4), we also have
Nn - N"(ac) + Nn(nsc)
1 4 A I
= D, 2K@ s 4 Y 2K(@ >nc,,:|,

ni2nl G o

It follows that

1 ,
Nynso) = — Z 2Ky, (7)

nl2® ¢

and

N, o) = i 2K o, (8)

nl2n on

Thus, the number of self-complementary
(hence neutral) symmetry types is given by
Slepian’s sum (1) restricted to the operation
classes C’’, while the number of non-self-
complementary symmetry types (neutral or
not) is given by the sum (1) extended over
the remaining operation classes C’. In
Table I are shown some values of N,,
N, and N,®eutel) computed with the aid
of (7) and (8), and Slepian’s formula? for the
number N,®eut=D  of peutral symmetry
types in 7 variables.

TABLE 1
NUMBERS OF SELF-COMPLEMENTARY SYMMETRY
Types, NEUTRAL SYMMETRY TYPES, AND ALL
SyMMETRY TYPES FOR 7 =1, 2, 3, 4 AND §

n N"(so) Nn(nau?.rnl) N,

1 1 1 3

2 2 2 6

3 6 6 22

4 42 74 402

> 4094 169,112 1,228,158

One notes from Table I that the ratio of
N,® to Np@eutml) appears to approach
zero as n increases. This is strikingly oppo-
site to what one might expect on the basis of
the cases =1, 2 and 3 alone, where all the
neutral symmetry types are also self-comple-
mentary. Thus, for large n it appears that
most of the neutral types are non-self-com-
plementary, and that self-complementary
types are, in the long run, a rather rare
phenomenon. Even for n#=35, the self-
complementary types constitute only about
2.4 per cent of all neutral symmetry types.
On the other hand, SC neutral symmetry
types certainly exist for all values of #n. (The
even and odd parity functions have this
property, for example.)

It is perhaps pertinent to inquire as to
the physical significance of the distinction
made above between operations of the group
G which belong to classes of category C’
and those belonging to category C”. We
first point out that any group operation ¢
may be represented in terms of an autono-
mous sequential network* consisting of shift
registers and inverters. These components
are connected in closed loops, the loops
being unconnected to each other, as in Fig.
3, for example. In any loop containing an
even number of inverters, these inverters
may be removed; and in any loop with an
odd number of inverters, all but a single
inverter may be removed. The first kind of
loop corresponds to what Slepian?® calls an
e-cycle. The second kind corresponds to
Slepian’s o-cycle. In replacing an even (or
odd) number of inverters by zero (or one)
inverter, we change the specific operation of
the group but not its class, C. Thus these
networks provide canonical representations
of the equivalence classes of the hypercube
group. The state diagram of the network
then represents the permutation induced by
the group operation on the vertices of the n
cube.
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Fig. 3—(a) Network representation of the variable
transformation: v—w, w—3%, x—7, y—sz, z—7. (b)
Canonical network representation equivalent to
(a).

Now the operation classes of category
C” (all permutation cycles of vertices of
even length) may be shown to correspond to
operations with some o-cycles. Likewise, the
classes C’ may be seen to consist solely of
operations made up of e-cycles. (These re-
sultsare implicit in Slepian’s work,3 although
no explicit mention is made there of the
fact.) In terms of our network model of the
situation, the classes C’ consist of those
operations represented canonically by in-
verter-free networks, while the classes "
cousist precisely of those operations whose
canonical representations contain one or
more inverters.

Since the inverter-free nets are par-
ticularly simple to analyze, it is most con-
venient to calculate N,®9 rather than
N9, The determination of the cycle set
[y, + + - kx@] for a given network of cate-
gory C’ may be carried out by means of
Slepian’s Table I, or more directly, by
means of the results given by Elspas?
relating to the cycle set of a circulating
shift register. The whole cycle set for all 2»
vertices (i.e., states) is then obtained by the
process of cycle set multiplication.1

An interesting and as yet unsolved prob-
lem is that of obtaining asymptotic expres-
sions of the numbers of SC and NSC neutral
symmetry types for large n.
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