
Amicable Pairs and Aliquot Sequences

Steven Finch

October 31, 2013

If  is a positive integer, let () denote the sum of all positive divisors of  that

are strictly less than . Then  is said to be perfect or 1-sociable if () = . We

mentioned perfect numbers in [1], asking whether infinitely many exist, but did not

report their reciprocal sum [2]
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This constant can, in fact, be rigorously calculated to 149 digits (and probably much

higher accuracy if needed).

Define () to be the th iterate of  with starting value . The integer  is

amicable or 2-sociable if 2() =  but () 6= . Such phrasing is based on

older terminology [3]: two distinct integers ,  are said to form an “amicable pair”

if () =  and () = . The (infinite?) sequence of amicable numbers possesses

zero asymptotic density [4] and, further, has reciprocal sum [5, 6]
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In contrast with the preceding, none of the digits are provably correct. The best

rigorous upper bound for this constant is almost 109; deeper understanding of the

behavior of amicable numbers will be required to improve upon this poor estimate.

Fix  ≥ 3. An integer  is k-sociable if () =  but () 6=  for all 1 ≤   .

No examples of 3-sociable numbers are known [7, 8]; the first example for 4 ≤   28

is the 5-cycle {12496 14288 15472 14536 14264} and the next example is the 4-cycle
{1264460 1547860 1727636 1305184}. Let  denote the sequence of all -sociable

numbers and  be the union of  over all . It is conjectured that the (infinite?)

sequence  possesses zero asymptotic density and progress toward confirming this

appears in [9]. No one is ready to compute the reciprocal sum of ; a proof of

convergence would seem to be faraway.

As an aside, we mention the sequence of prime-indexed primes, which is clearly

infinite and has reciprocal sum [10]
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Again, this is conjectural only. The best rigorous lower/upper bounds for this con-

stant are 104299 and 104365 [2] Such bounds are tighter than those (183408 and

234676) for the reciprocal sum of twin primes [11].

Our main interest is in the “aliquot sequence” {())∞=1, where we assume
WLOG that  is even. For example, if  = 12, the sequence {16 15 9 4 3 1} is
finite (terminates at 1). From earlier, we know that infinite cyclic behavior is possi-

ble. Does an infinite unbounded aliquot sequence exist? On the one hand, starting

with  = 276, extensive computation has yielded 1769 terms with no end in sight

[12, 13, 14, 15, 16]; probabilistic arguments in [17, 18], based on the arithmetic mean

of (2)(2), also support a belief that most sequences grow without bound.

On the other hand, the geometric mean of (2)(2):
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(which seems a more appropriate tool than a simple average) predicts the opposite.

Bosma & Kane [19] proved that
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= −00332594808  0
which implies that the geometric mean  = exp() = 09672875344  1. The

indicated numerical estimates are due to Sebah [20]. Sums and products over  are

restricted to primes; further,
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The fact that   1 suggests that aliquot sequences tend to decrease ultimately,

evidence in favor of the Catalan-Dickson conjecture. It would be good to compute

other related constants, appearing in [21], to similar levels of precision.

From [1, 22], the probability that () exceeds , for arbitrary , is
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(what was called (2)). The fact that these odds are significantly less than 12 again

suggests that unboundedness is a rare event, if it occurs at all.
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