|
|
A000373
|
|
Conjectured dimension of a module associated with the free commutative Moufang loop with n generators.
|
|
1
|
|
|
0, 0, 1, 8, 44, 214, 1000, 4592, 20888, 94846, 434973, 2042836, 9979086, 51460622, 283839957, 1688139424, 10859199656, 75338888918, 560740210491, 4445766353604, 37329808482989, 330143634313064, 3064464030121369
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,4
|
|
COMMENTS
|
There is an explicit formula for the n-th term of this sequence (see Eq. (8.4) of Smith (1982)). It is conjectured that this gives the answer to a question of Manin about the dimension of a certain module associated with the free commutative Moufang loop with n generators. - N. J. A. Sloane, May 21 2014
|
|
REFERENCES
|
Yu. I. Manin, Cubic Forms, Second edition, North-Holland Publishing Co., Amsterdam, 1986, page 312. MR0833513 (87d:11037)
Smith, Jonathan D. H.; Commutative Moufang loops and Bessel functions. Invent. Math. 67 (1982), no. 1, 173-187.
|
|
LINKS
|
Table of n, a(n) for n=1..23.
|
|
EXAMPLE
|
G.f. = x^3 + 8*x^4 + 44*x^5 + 214*x^6 + 1000*x^7 + 4592*x^8 + 20888*x^9 + ...
|
|
PROG
|
(PARI) {a(n) = local(A); if( n<3, 0, A = Vec(-1 + serlaplace( serlaplace( subst( 1 / besselj(0, x + O(x^n)), x^2, 4*x)))); A[1] = 0; sum(k=1, (n-1)\2, sum(p=0, n - 2*k - 1, n! / p! / (2*k+1)! / (n - p - 2*k -1 )! * (A[k] + binomial( p+k-1, k-1)))))}; /* Michael Somos, May 17 2004 */
|
|
CROSSREFS
|
Sequence in context: A270678 A292487 A125318 * A176688 A272154 A270935
Adjacent sequences: A000370 A000371 A000372 * A000374 A000375 A000376
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|