

A000202


a(8i+j) = 13i + a(j), where 1<=j<=8.
(Formerly M2323 N0918)


1



1, 3, 4, 6, 8, 9, 11, 12, 14, 16, 17, 19, 21, 22, 24, 25, 27, 29, 30, 32, 34, 35, 37, 38, 40, 42, 43, 45, 47, 48, 50, 51, 53, 55, 56, 58, 60, 61, 63, 64, 66, 68, 69, 71, 73, 74, 76, 77, 79, 81, 82, 84, 86, 87, 89, 90, 92, 94, 95, 97, 99, 100, 102, 103, 105, 107, 108, 110
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Michael De Vlieger, Table of n, a(n) for n = 1..10000
James F. Peters, Problem H327, Advanced Problems and Solutions, The Fibonacci Quarterly, Vol. 19, No. 2 (1981), p. 189; Are You Curious?, Solution to Problem H327 by Paul S. Bruckman, ibid., Vol. 20, No. 4 (1982), pp. 373375.
D. E. Thoro, Problem H12, Advanced Problems and Solutions, The Fibonacci Quarterly, Vol. 1, No. 2 (1963), p. 54; A Curious Sequence, Solution to Problem H12 by Malcolm Tallman, ibid., Vol. 1, No. 4 (1963), p. 50.
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,1,1).


FORMULA

a(n) = floor((13*n  1)/8).  Jon E. Schoenfield, Aug 21 2022
a(Fibonacci(n)1) = Fibonacci(n+1)  2, for n>=6 (Peters, 1981).  Amiram Eldar, Jan 27 2022


MAPLE

a[0] := 0:a[1] := 1:a[2] := 3:a[3] := 4:a[4] := 6:a[5] := 8:a[6] := 9:a[7] := 11:a[8] := 12: for m from 9 to 200 do if irem(m, 8)=0 then myrem := 8; myquo := iquo(m, 8)1; else myrem := irem(m, 8); myquo := iquo(m, 8) fi; a[m] := 13*myquo +a[myrem] od: for k from 1 to 200 do printf(`%a, `, a[k]) od: # James A. Sellers, May 29 2000


MATHEMATICA

Set[#, {1, 3, 4, 6, 8, 9, 11, 12}] &@ Map[a[#] &, Range[0, 7]]; a[n_] := a[n] = 13 #1 + a[#2] & @@ QuotientRemainder[n, 8]; Array[a, 68, 0] (* Michael De Vlieger, Sep 08 2017 *)


PROG

(PARI) a(n) = floor((13*n  1)/8); \\ Jon E. Schoenfield, Aug 21 2022


CROSSREFS

Different from A000201, A066096, A090908.
Cf. A000045.
Sequence in context: A000201 A090908 A292644 * A188035 A026339 A182774
Adjacent sequences: A000199 A000200 A000201 * A000203 A000204 A000205


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane


EXTENSIONS

More terms from James A. Sellers, May 29 2000


STATUS

approved



