Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M1469 N0580 #129 Feb 22 2024 19:47:28
%S 1,1,1,2,5,14,50,233,1249,7595,49566,339722,2406841,17490241,
%T 129664753,977526957,7475907149,57896349553,453382272049,
%U 3585853662949,28615703421545
%N Number of simplicial polyhedra with n vertices; simple planar graphs with n vertices and 3n-6 edges; maximal simple planar graphs with n vertices; planar triangulations with n vertices; triangulations of the sphere with n vertices; 3-connected cubic planar graphs on 2n-4 vertices.
%C Every planar triangulation on n >= 4 vertices is 3-connected (the connectivity either 3, 4, or 5) and its dual graph is a 3-connected cubic planar graph on 2n-4 vertices. - _Manfred Scheucher_, Mar 17 2023
%D G. Brinkmann and Brendan McKay, in preparation. [Looking at http://users.cecs.anu.edu.au/~bdm/publications.html, there are a few papers with Brinkmann that seem relevant, in particular #126 but also #97, 81, 158. Perhaps the right one is 126.]
%D M. B. Dillencourt, Polyhedra of small orders and their Hamiltonian properties. Tech. Rep. 92-91, Info. and Comp. Sci. Dept., Univ. Calif. Irvine, 1992.
%D C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.
%D B. Grünbaum, Convex Polytopes. Wiley, NY, 1967, p. 424.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H David Wasserman, <a href="/A000109/b000109.txt">Table of n, a(n) for n = 3..23</a>
%H J. Bokowski and P. Schuchert, <a href="http://www.digizeitschriften.de/dms/img/?PID=GDZPPN000367230">Equifacetted 3-spheres as topes of nonpolytopal matroid polytopes</a>, Discrete Comput. Geom. 13 (1995), no. 3-4, 347-361.
%H R. Bowen and S. Fisk, <a href="/A000103/a000103.pdf">Generation of triangulations of the sphere</a> [Annotated scanned copy]
%H R. Bowen and S. Fisk, <a href="http://dx.doi.org/10.1090/S0025-5718-1967-0223277-3">Generation of triangulations of the sphere</a>, Math. Comp., 21 (1967), 250-252.
%H Gunnar Brinkmann and Brendan McKay, <a href="http://users.cecs.anu.edu.au/~bdm/plantri/">plantri and fullgen</a> programs for generation of certain types of planar graph.
%H Gunnar Brinkmann and Brendan McKay, <a href="/A000103/a000103_1.pdf">plantri and fullgen</a> programs for generation of certain types of planar graph [Cached copy, pdf file only, no active links, with permission]
%H CombOS - Combinatorial Object Server, <a href="http://combos.org/plantri">generate planar graphs</a>
%H Aharon Davidson, <a href="https://arxiv.org/abs/1907.03090">From Planck Area to Graph Theory: Topologically Distinct Black Hole Microstates</a>, arXiv:1907.03090 [gr-qc], 2019.
%H M. Deza, M. Dutour and P. W. Fowler, <a href="http://dx.doi.org/10.1021/ci049955h">Zigzags, railroads and knots in fullerenes</a>, J. Chem. Inf. Comput. Sci., 44 (2004), 1282-1293.
%H C. F. Earl and L. J. March, <a href="/A005500/a005500_1.pdf">Architectural applications of graph theory</a>, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979. (Annotated scanned copy)
%H P. J. Federico, <a href="http://dx.doi.org/10.1016/S0021-9800(69)80050-5">Enumeration of polyhedra: the number of 9-hedra</a>, J. Combin. Theory, 7 (1969), 155-161.
%H Firsching, Moritz <a href="https://doi.org/10.1007/s10107-017-1120-0">Realizability and inscribability for simplicial polytopes via nonlinear optimization</a>. Math. Program. 166, No. 1-2 (A), 273-295 (2017). Table 1
%H Komei Fukuda, Hiroyuki Miyata, and Sonoko Moriyama, <a href="http://arxiv.org/abs/1204.0645">Complete Enumeration of Small Realizable Oriented Matroids</a>. Discrete Comput. Geom. 49 (2013), no. 2, 359--381. MR3017917. Also arXiv:1204.0645 [math.CO], 2012. - From _N. J. A. Sloane_, Feb 16 2013
%H Jan Goedgebeur and Patric R. J. Ostergard, <a href="https://arxiv.org/abs/2105.01363">Switching 3-Edge-Colorings of Cubic Graphs</a>, arXiv:2105:01363 [math.CO], May 2021. See Table 4.
%H R. K. Guy, <a href="/A005347/a005347.pdf">The Second Strong Law of Small Numbers</a>, Math. Mag, 63 (1990), no. 1, 3-20. [Annotated scanned copy]
%H Lee Zheng Han and Chia Vui Leong, <a href="http://archive.ymsc.tsinghua.edu.cn/pacm_download/232/8908-A5.The_Walk_of_Maximal_Planar_Graphs.pdf">The Walk of Maximal Planar Graphs</a>, 2018.
%H Paul Jungeblut, <a href="https://i11www.iti.kit.edu/_media/teaching/theses/ma-jungeblut-19.pdf">Edge Guarding Plane Graphs</a>, Master Thesis, Karlsruhe Institute of Technology (Germany, 2019).
%H J. Lederberg, <a href="/A000602/a000602_10.pdf">Dendral-64, II</a>, Report to NASA, Dec 1965 [Annotated scanned copy]
%H J. Lederberg, <a href="http://www.jstor.org/stable/2314879">Hamilton circuits of convex trivalent polyhedra (up to 18 vertices)</a>, Am. Math. Monthly, 74 (1967), 522-527.
%H J. Lederberg, <a href="/A000109/a000109.pdf">Hamilton circuits of convex trivalent polyhedra (up to 18 vertices)</a>, Am. Math. Monthly, 74 (1967), 522-527. (Annotated scanned copy)
%H F. H. Lutz, <a href="https://arxiv.org/abs/math/0506372">Triangulated manifolds with few vertices: Combinatorial Manifolds</a>, arXiv:math/0506372 [math.CO], 2005.
%H G. P. Michon, <a href="http://www.numericana.com/data/polyhedra.htm">Counting Polyhedra</a>
%H Manfred Scheucher, Hendrik Schrezenmaier, and Raphael Steiner, <a href="https://arxiv.org/abs/1811.06482">A Note On Universal Point Sets for Planar Graphs</a>, arXiv:1811.06482 [math.CO], 2018.
%H I. Sciriha and P. W. Fowler, <a href="https://dx.doi.org/10.1021/ci700097j">Nonbonding Orbitals in Fullerenes: Nuts and Cores in Singular Polyhedral Graphs</a>, J. Chem. Inf. Model., 47, 5, 1763 - 1775, 2007.
%H A. Stoimenow, <a href="https://doi.org/10.1007/s00493-014-2840-x">A theorem on graph embedding with a relation to hyperbolic volume</a>, Combinatorica, October 2016, Volume 36, Issue 5, pp 557-589.
%H Thom Sulanke, <a href="http://hep.physics.indiana.edu/~tsulanke/graphs/surftri/">Generating triangulations of surfaces (surftri)</a>, (also subpages).
%H William T. Tutte, <a href="https://doi.org/10.4153/CJM-1962-002-9">A census of planar triangulations</a>, Canad. J. Math. 14 (1962), 21-38.
%H William T. Tutte, <a href="https://doi.org/10.1016/0095-8956(80)90059-3">On the enumeration of convex polyhedra</a>, J. Combin. Theory Ser. B 28 (1980), 105-126.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CubicPolyhedralGraph.html">Cubic Polyhedral Graph</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SimplePolyhedron.html">Simple Polyhedron</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TriangulatedGraph.html">Triangulated Graph</a>
%H <a href="/index/Cor#core">Index entries for "core" sequences</a>
%F From _William P. Orrick_, Apr 07 2021: (Start)
%F a(n) >= A007816(n-3)/n! = binomial(n,2)*(4*n-11)!/(n!*(3*n-6)!) for all n >= 4.
%F a(n) ~ A007816(n-3)/n! = binomial(n,2)*(4*n-11)!/(n!*(3*n-6)!) ~ (1/64)*sqrt(1/(6*Pi))*n^(-7/2)*(256/27)^(n-2), using the theorem that the automorphism group of a maximal planar graph is almost certainly trivial as n gets large. (Tutte)
%F (End)
%Y Cf. A005964, A007816, A058378, A253882.
%Y Cf. A000944, A007021, A111358.
%K nonn,nice,hard,more,core
%O 3,4
%A _N. J. A. Sloane_
%E Extended by _Brendan McKay_ and _Gunnar Brinkmann_ using their program "plantri", Dec 19 2000
%E Definition clarified by _Manfred Scheucher_, Mar 17 2023