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it follows that

, V3 (abc ?
T VWVLVLY

since V= , etc.
If we designate by 4, B, C, D the areas of the faces BCD, CDA, DAB, ABC
and by x, 3, z, ¢ the absolute normal tetrahedral coordinates of O with respect to

ABCD, we have
81V3 <abc>2
V= — ).

 AxByCiDi

But we have Ax+By+Cz+Dt=3V. The maximum of AxByCzD! occurs for
Ax=By=Cz=Dt, so that the point O should coincide with the centroid of
ABCD.

Genetic Algebra
4277 [1948, 34]. Proposed by C. D. Olds, San Jose State College, California

In a non-associative algebra, it is necessary to distinguish the possible inter-
pretations of x". Thus, for example, in a non-commutative non-assoclative
algebra x® can mean x-x? or x2-x. In a general non-commutative non-associative
algebra the number of interpretations of x" is 2(2n— 3)!/nl(n—2)! Is there a
formula for the number of interpretations of x» in a general commutative
non-associative algebra?

Discussion by H. W. Becker, Santa Monica, California. The expression
2n
(1) Nuopr = 2u)l/nl(n 4+ 1)! = ( )/(n + 1)

has a wide variety of distinct combinatorial and graphical interpretations, of at
least five different types. That the types are distinct is made evident upon at-
tempting to enumerate the symmetrically different sequences or graphs of each
type, for these in general yield unequal numbers.

Wedderburn [1] demonstrated the well known

(2) Ni=No=1, No=2 Nom Nn,
Mam ]

and showed that, upon omitting all terms of (2) having like form, we have

(3) N{ = Nal = 1, N'.:n+l = Z A’Vi.:n-kl—M'N:m
Mam |
) n—1 i k
(4) Ny =1, C Ngw= No(N.+1)/2 4+ S N N
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Here N/ and N, are the numbers of commutative and non-commutative,
non-associative products of s factors.

Etherington (2] independently found generating functions for N, and N}
£ R Y et s A ey yield a simple formula for the first
but not the second, His further work [3, 4] founded a tradition in genetic algebra
wihiose development at the hands of R, D. Schafer [5, 6, 7] reached a wide audi-
ence.

In lieu of an exact formula for NV, we seek an approximation. By Stirling's

approximation to !, (1) becomes
(5) : Nepr = 47/(n + DvV/7n,

whence N, /N, approaches 4 with increasing . If we calculate N, and N}
tor values of through # =25, and utilize an idea due to Motzkin [8], the follow--
ing results are suggested empirically:

(6) Nwtt/Nuyi = R.,  R,/R,_, = Ty a1 = 1.612.
Thus '
(7) Nasi/No=ka, B b= 4/r = 248,

If the number £, is defined so that the following equation is true, it appears as
though there exists a number £, the limit of kay in terms of which the desired
approximation of Nj,, may be expressed. We have then kn=0.812 and ap-
proximately

(8) Nuss = hak/(n + 1)v/n ~ Nug1/(0.7)7m,

This formula is suggested for what it may be worth, based as it is on inspec-
tion of a few values of n, and lacking any proof of the existence of the limits
t, k, or k. The detailed figures are shown in the table below., Note, however, that
(5) and (8) have the same form, U,~ab"/n32 as the approximations for the -
number of #-branch series-parallel passive circuits [9], and of n-branch root-
trees [10].

Other interpretations of the function (1) should be of interest. NV, is the

number of planar rhyme schemes [11], such that there are no crossovers in the
Puttenham diagram [12]. Mo\ is the number of ballot sequences in a two
party election, such that the non-loser gets u— 1 votes and is never behind his
opponent, who may get anywhere from 0 to 7 — { votes, Lucas [13], p. 164, /e
serubin du ballotage. (See also p. 14, marches du pion du jeu de dames; p. 86,
les deux files de soldats; and p. 87, déplacements de la tour sur Uéchiquier triangu-
laire.) :
N4 is the number of ways of decomposing an (n4-2)-gon into triangles by
n—1 non-intersecting diagonals, Lucas [13], pp. 90-96, 489. N,,; is also the
number of ways of joining 2x points around a circle by » non-intersecting chords,
the ¢, of Motzkin [8], which linearize to the configurations superieures of
Touchard [14]. '
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This problem 4277 may also be re
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19
20
21
22
23
24
25

1.
2.
3.
4.
S.
6.
7.

ADVANCED PROBLEMS AND SOLUTIONS

1941, 564], whose solutions provide a helplu

’
N

Ny

O b= pa

5

14

42

132

429

1430

4862

16796

58786

2 08012

7 42900

26 74440

96 94845

353 57670

1296 44790
4776 38700 1
17672 63190 2
65641 20420 6
2 44662 67020 16
9 14825 63640 36
34 30596 13650 84

128 99041 47324

10% Retered

J. H. M. Wedderburn, Annals of Math.
I. H.

WK =

6

11

23

46

98
207
451
983
2179
4850
10905
24631
56011
27912
93547
76157
63372
26149
36379

ces

i
2
1.

1.

1.

1
1
1
1
1
1
1
1
1
1
1.
1
1
1
1
1
1.
1.
1.
1.

25
867
S

714
.558
.663
.595
.635
.607
.624
.612
.617
.612

615

.613
.613
.612
.612
.612

6121
6118
6118
6117

. 24 (1922-1923) 121-140.

M. Etherington, Math. Gazette, XXI (1937) 36-39, 153.

, Ibid., 61 (1941) 2442,

R. D. Schafer, Amer. Jour. of Math., LXXI (1949) 121-133.
» Lile Magazine, Dec, 29, 1947, p. 56.

, Tbid., Jan. 19, 1948, p. 11.

, Proc. Royal Soc. Edinburgh, 59 (1939) 242-258.

8. Th. Motzkin, Buli. Am. Math. Soc., 54 (1948) 352-360.

9. Riordan & Shannon, Jour. of Math, &P

10
11
12
13

14

. Otter, Annals of Math., 49 (1948)

583-599.

hys., 21 (1942) 92.

- H.W. Becker, Math. Mag., XXI1 (1948-1919) 23-26.
. G. Puttenham, Tie Arie of Englisi: Poesie (London, 1589) 86-88.
- Ed. Lucas, Tieories des Nombres (Paris, 1891).

ka

.8333
.0909

.1304
L1122
.1787
.1796
.2167
.2258
.24835
.2587
274

.2837
.2949
.3034
.3121
.3194
.3265
.3328
.3387
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garded as a sequel to problem 3954 of O.
I background.

hn

.806
.69
.909
.791
.856
.809
.842
.83
.824
.814
8175
.8119
.8139
811
.8118
.8108
.8109
.8105
.8108
.8108
(811
.8112
8115
.8119
.8121

. J. Touchard, Probieme des Timbres-Paoste, to appear in the Canadian Journal of Mathe.-
matics. : '



