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1. INTRODUCTION

In a recent note [1], the authors discuss derivations of integer sequences called Hoggatt
Sums and associated triangular arrays called Hoggatt Triangles. The nomenclature was proposed
as a tribute to the late Verner Hoggatt, Jr. since the investigation and extension of an
unpublicized conjecture of Hoggatt ultimately resulted in the above sums and triangles. In
personal correspondence [2], Hoggatt conjectured that the third (counting as 0, 1, 2, 3, ...) right
diagonal of Pascal’s triangle could be used to determine the sequence of integers, Sy, S;, S,, ...
Sm. ..., which are identically the Baxter permutation counts [3] of indices 0, 1, 2, ... , m, ...
Hoggatt based his calculation algorithm for S, on sums of products between third diagonal terms
from Pascal’s triangle and appropriately corresponding terms from a completed S,,.;. The
authors’ note [1] supplied the missing proof of Hoggatt’s conjecture. Hoggatt’s conjecture was
then extended to include all right Pascal triangle diagonals indexed as 0, 1, 2, 3, ..., d, ... . For
each d, the set of Sm’s became Hoggatt sums of order d, and the individual integers which sum to
a particular S, became row members of a triangular array called a Hoggatt triangle of order d.
With the inclusion of d as a variable parameter, the numerical results of [1] can be interpreted as
sequences of (S;)m’s with fixed index d and variable index m. For example, the Baxter
permutation count values are Hoggatt sums of order three whose general sequence term is (S3)m.
Sequences of Hoggatt sums follow a linear recursion which is index-variant in m, i.e., the
calculation of (S;)m for d fixed depends not only on previous members of the sequence but also
depends on the value of m. Difference equations for this type of recursion are known to be
difficult, if not impossible, to obtain by operational methods [4].

In the present investigation, Hoggatt sums and triangles are used to develop two new
types of sequences. The first type (defined as Hoggatt Second Kind Sequences) consists of
sequences of Hoggatt sums, (S;)m, with m fixed and d variable. The second type (defined as
Hoggatt Position Sequences) consists of sequences of terms from the p”' positions of the m'" rows
of d'* order Hoggatt triangles. Here p and m are fixed while d is the variable index. Both new
sequences are index-invariant in d and belong to a class of recursions we have taken the liberty of
calling “elementary”. Of all the formally documented recursive sequences (see [5]), these stand
“out as the simplest. The index-invariant feature permits the use of operational mecthods to
determine general forms for properties of the sequences once the degree, n, of recursion is

established.

Since many of the results of this paper rely on numerical calculations, a word about
calculation methods is in order. The calculations often involve extremely Jarge but exact integers.
There can be no rounding approximations! Except for lowest order calculations, hand methods or
pocket calculators are out of the question. No matter how sophisticated they may be,
conventional high-level computer languages eventually produce floating point and/or round-off
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errors. Fortunately, in recent years computer algebra systems such as MACSYMA, muMath,
etc., [6] have been introduced. As well as performing complicated symbolic algebraic operations,
the systems admit exact rational arithmetic with integers limited in size only by a well-managed
available memory. We used a version of muMath on an AT clone personal computer. Thus,
with size no obstacle, we were able to extend our integer use to meet the demands of almost any
test situation.

2. BACKGROUND DETAILS

Prior to presenting our development, a very brief review of pertinent features of Hoggatt
sums and triangles is essintial. The general form of Hoggatt’s conjecture from [1], recast and
extended for use hercin, follows:

“Select. the zeroth and d'” right diagonals of Pascal’s triangle and let them be the zeroth and first
right diagonals of a new triangle with as yet undetermined values for the remaining right
diagonals. For m=2, 3, 4, ... in succession, compute the m'® row sum and m'? row individual
entries as

Som =1 (g Ul gl (o) 0

where the (R,,.{)¢’s are the row integers from the previously completed (m—1)st row starting
with g=0 on the left. The D,’s are the first diagonal integers starting with q=0 on the top right.

THEN, the m,, row sum, (S;)m, given by (1) is identically Hoggatt’s sum with indices d and m.

Morover,
L () gl (2o b, (mg)( Bl

are the values of the row integers, P(m, p, d), of row m as assigned to positions 0, 1, ..., m.”

An example taken from [1] illustrates for d=3, m=5 how the algorithm generates the fifth
row terms from completed rows zero through four. The imcomplete Hoggatt triangle is shown as

1
1 1
1 4 1
1 10 10 1 (3)
1 20 50 20 1
1 35 X X X X

The values chosen according to the conjecture result in the following generation of terms to
complete the f{ifth row.

1, 35(4)= 35, 35(%)= 175, 35(3% )= 175, 35(23)= 35, 35(%5 )= 1. (4)

(Note that the zeroth and first terms of any row are always present.) The row sum (S

3)s =
1435+175417543541 = 422. A typical position term, say the fourth, is P(5,4,3) = 35.
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A general form readily adaptable for computing Hoggatt sums is

) () () () (9 .
OO G M O O G0 )

which can be condensed to

-1

h m+d-1-k
(Sa)m =1+ g( ‘ >. (6)

d+k
= (44

The value for P(m, p, d), the member in the p'? position of the m'” row of a d'™ order
Hoggatt triangle, is given by

-1 [m+d-1-h
P(m, p, d) = ' ((+h)), (7
d

where P(m, 0, d) = 1 and p<m. For example, P(5, 3, 4) is calculated as

3

1

b

>
1}

Hoggatt triangles of orders 0 through 5, rows of index 0 through 6, are shown in Figure 1.
The rectangular and circular enclosures are reserved for later use to illustrate properties of sets of
P(m, p, d) entries for fixed m and p values.

° = 1
0 1 P =1 1 P =1
1 1 17 p=2 1 1’//p=2 = 2
2 1 1 17 1 2 11
3 1+ 1 1 1 1 3 3
4 ' PRIKER IS 1_4[6] 4 1
5 1 @1 1 1 1 1 10 0 5 1 so 15 1
d =0 d =1
[} 1 P = 1 /P=1
1 1 17 p =2 2 1 1 /p=2
2 1 4 1 1 8 11
3 1+ 10 10 1 1 21 2
(0] 1_56/196]56 1
4 1_20[50]20 1
S 1 175175 35 1 1 1176 1176126 1
d =3 d =5

Figure 1. Partial Hoggatt Triangies, d = 0 to 5.
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3. PROPERTIES OF ELEMENTARY. RECURSIONS

In this section we define “elementary” recursions and develop general forms for their
generating functions, homogeneous difference equations, and general sequence terms. If the order
of recursion is n, the first n terms of the sequence can serve as initial conditions in a homogeneous
equation or elsewhere as needed. A numerical algorithm by which the order, n, of any elementary
recursion can be found is developed in the next section.

In determining the type and order of recursion in a sequence of integers, a convenient first
trial is to calculate sucessive forward differences and hope to observe some unifying relation
among the differences of various orders. (See Sloane [5], pp. 5-10.) The simplest of such
observations occurs when the n'® differences are all zero. Regardless of order, these recursions are
defined herein as “elementary”. Such recursions are linear and index-invariant. Once the order of
an elementary recursion is determined, its generating function, homogeneous difference equation,
and general sequence term can be found from regular and predictable procedures.

As an illustration of the procedures, consider the sequence for (S;);d =0, 1, 2, ... (as
calculated from (6)). For difference representation, A replaces (S;);. The partial triangle of
differences becomes

d A ALY Ay AF

0 4
4
1 8 2
6 0
2 14 2
8 0 (9)
3 22 2
10 0
4 32 2
12
) 44

For loca]‘computations to follow, (S4)3 = Ay = a;. We have A} =0, A2, — A =0, A, —
ZA},H -+ Afi = 0, and A3+3 - 3A2+2 + 3A3+, - Ag = 0. This leads to the homogeneous
difference equation

g4 — 3344y + 32g4; —ay =0 (10)
The z-transform [41] of both sides of (10) yiclds
{zs[(ad)—aoj—z2al—zaz}—B{ZZI:Z(ad)—ao:l—zél}+3{z|:Z(ad)—a0]}—Z(ad) =0, (11)
where ag, a;, 2, are the initial conditions for (10). After factoring out Z(a,) and rearranging

terms, we have the closed form of Z(a,;) which is also the generating function in powers of 1/z of
the sequence. Z(a,) becomes
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2°ag+2°(a,-32,)+2(ay-3a,+3a,) 47342249

Z(ayg) = (z-1)° = @1)?° (12)

(For those who wish a more conventional generating function form, 1/z can be replaced by x.)
One way of getting a general sequence term is to find the inverse z-transform of (12) using an
inversion integral [4] whose integrand is Z(a,) multiplies by z%"!.  The inversion integral is a
contour integral in the z-plane where the contour can be taken as any counter-clockwise
encirclernent of the origin in the finite z-plane which completely encloses the unit circle without
touching it.

9 {23ay+2%(a,-3ap)+2(as-3a,+3a,)}2% ! d2
%4 = 7m (z-1)3

(13)

The general term, a,, is equal to the residue of the integrand in the third order pole at z = 1.
The integrand can be expanded in a Laurent expansion about the third order pole at z = 1. By
dividing out he pole factor (z-1), the Laurent expansion assumes the form shown below where
the braced ({ }) portion is the numerator of the integrand with no singularities at z = 1. Hence
the braced portion can be expanded in a Taylor’s series about z = 1.

(2_11)3 {xxxx + xxxx(z—1) + Residue(z—1)2 + xx_xx(z—l)3 + ... } (14)

The only coefficient of interest to us in the Taylor expansion is the coefficient of (z—l)2 because
it is the coefficient of 1/(z—1) in the Laurent expansion of the integrand and, hence, the desired
residue. A convenient way to avoid the differentiations of Taylor expansions is to shift plane
origins by letting (z—1) = W, replace z by (14+W), and after binomial expansion, pick the total
coefficient of W2 as the residue. The numerator of the integrand in W is

(14+W)?*%ag + (14 W) (a; —3ag) + (14+W)“(a, —3a,+3a,). (15)
The coefficient of W? in (15) becomes

ay = (dgz)ao + (d?‘:l)(al—Bao) + (g)(a2—3a1+3ao), (16)
or, alternately,

2 2
(a42)Pag + (4+1) P (a1-300) + () (ay30,+3a0)
ay = " . (17)

where (d+2)(2), for example, is the partial factorial (d+2)(d+1), etc. For the numerical example,
substitution leads to

a; = (S;); =d® +3d + 2. (18)

Although the numerical results of (10), (12), and (18) serve as satisfying computational examples,
(10) through (17) suggest what similar expressions for other specific orders and even the general
order, n, might look like. For the third order case presented above, a guiding “threeness” is very
evident in the expressions.  As difference triangles are extended to higher orders, it becomes
evident that for elementary recurisons of order n, it is Aj which first becomes zero and that n
sequence tersm, a, through a,_, are necessary to complete the triangle. The general homogeneous
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difference equation becomes

i: (_l)r(y’})a(un-r _ ad+n—(?)ad+n_l 4 (;)ad+n-2+ B (_1)11(2)&:1 — 0. (19)

r=1

Application of the z-transform to (19) yields the general generating function

Z"ao+zn_l(al'(? )a0)+z"'2(a2-(’1‘ )314‘(121)30)

PR +z{an_1-(rll)an—2+ +('1)n_1(nr—ll)a°} (20)

Z(ag) = (z-1)"

Applying the inversion integral to (20), there results two equivalent forms of the general sequence
term for elementary recursions of order n,

(e (e + (0O GR]
(o (o e+ (2 e

ag—=

(0 @402 o (Do} + (T2 )z - (P + (3)ao}

. -+(d)(n l){a’n-l - ( gy + .- H(-1 )n-l(nrfl)ao}

ag = (n 1 1 (22)

Note that the example solutions are merely special cases of the above for n = 3. If n and
ay through a,., of an elementary recursion are known, it is now possible to write the
homogeneous difference equation, the generating function, and the general sequence term almost
by inspection.

4. ALGORITHM FOR FINDING ORDER, n

The expressions for homogeneous difference equations, generating functions, and general
sequence terms derived above, are worthless unless n and the first n sequence terms, a; through
a,., are known. However, the primary purpose of this paper is to investigate the above properties
in two types of elementary recursive sequences from Hoggatt sums and triangles in which n is not
known. On the other hand, because of (6) and (7), all sequence terms, a, through a, ; and
beyond, are known for any n whatever. All that is needed is the m specification in (6) and the m,
p specification in (7). If we hope to generalize n as a function of m (or m and p) through
computer simulation, we must obtain n for a sufficiently large sampling involving m (or m and
p)-

Even though a recursion is known to be elementary, the difference triangle approach can
become overwhelmingly tedious for large n and is not particularly suitable for machine
computation. As a practical algorithm for finding n, consider the generating function (20) for any
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order n. When expanded, (20) is the open form of the z-transform, and infinite sequence in
powers of 1/z. This sequence can be found by dividing (z-1)" into the numerator of (20). Since

the first n sequence coefficients, a, through a,_, are presumed known for any chosen n, the
quotient can be expressed as

a9 + a1/z + ag/2’ + - + 2 /27 + (=) +{ag— (7 )a,
oA D e Je (23)
The coefficient, an, of 1/2" ( in braces { }) is the first coefficient to depend on all n coefficients,

ag through a,_,. Because of recursion, all coefficients beyond and including a, thereby depend on
aq through a,_;. For an in particular, we have

an = (—1)"‘1{;10 - (';)al + (g)a2 Yot (=)™ (n’_‘l)an_l}. (24)

If a, is subtracted from both sides of (24), the result, regardless of (—1)""", is

{a.o - (T)al + (;)az + -+ (—1)"an} = 0. (25)

For our two types of sequences, the value of n is not known but as many of ag, a;, aq, -+
as are needed are available. Start with n=1 and test (25) for { } = 0. If { } # 0, then try
successively larger trial n’s. The smallest n which satisfies (25) is the order, n, of the elementary
recursion. It can be shown that any larger trial n also satisfies (25), so that a wide variety of
bracketing steps could be employed to find n. In a simple illustration of the algorithm as used
herein, sequence terms with the, sign of every odd-indexed term reversed are multiplied by
binomial coefficeints corresponding to a test n. The products are added and the sum tested for
zero. If the sum is not zero, n is incremented and the process repeated as required using the next
order of binomial coefficeints. An example of a test which results in the recursion order seven for
the sequence for (S;)5 is shown in (26).

n=»5 n=>6 n=7
+ag 6x 1= 6 +a, 6x 1= 6 +a, 6x 1= 6
-8 —32x 5= 160 -8 -32x 6= 92 -8y —32x 7= 224
+a9 132x10= 1320 +a9 132x15= 1980 +aq 132x21= 2772
—8q —422x10=4220 —83 —422x20= —8440| a4 ——422x35:r—l4.770
+ay 1122x 5= 5610 +a, 1122x15= 16830 +a4 1122x35= 39270 (26)
—a5 —2606x 1=-2606 -8 —2606x 6=15636 —ag —2606x21=54726
TOTAL= -0 +ag  5462x 1= 5462 tag 5462x 7= 38234
TOTAL= 10l —aq —10562x 1=10562

TOTAL= 0
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5. HOGGATT SEQUENCES OF THE SECOND KIND

Since the original Hoggatt sums were sequences of (S;)m with m as the variable index
and d fixed, it seemed logical to name sequences of (S )m in which d is the variable index and m
is fixed, Hoggatt sequences of the second kind. The second kind sequences are much easier to
work with since the recursion is elementary. Examples of several second kind sequences calculated

using (5) or (6), are listed in (27). Shown also are the values of recursion order, n, versus m. The .

values of n were found using members of the second kind sequences and the order algorithm

discussed in the previous section.

d(Sao(Sahr  (Sa)2 (Sads (Sala (Sa)s (Sa)s (Sa)z

01 2 3 q 5 6 7 3

11 2 4 8 16 32 64 128

2 1 2 5 14 42 132 429 1430 —
31 2 6 22 92 422 2074 10754 —@5)— P
41 2 7 32 177 1122 7898 60398 — /i

5 1 2 8 44 310 4606 25202 272582 — A 5350
6 1 2 9 58 506 5462 70226 1038578 [} 153
71 2 10 74 782 10562 175826 3457742 — A <
8 1 2 11 92 1157 19142 403691 10312304 —

9 1 2 12 112 1652 32892 862864 28066040

101 2 13 134 2290 54056 1736737 70702634

m 0 1 2 3 q 5 6 7

n_ 1 1 2 3 5 7 10 13

It is suggested by (27) that n is a function of m and, except for m = 0, the order is never less
than m. This makes m a good first candidate for a trial n in the order algorithm. However,
before any explicit relationships can be found, more comparisons must be observed. Through
extensive use of muMath, the order algorithm, and values generated by (5) or (6), the following

tabulation was found:

. m0O12345 6 7 8 910 11 12 13 14 15 16 17 18 19

o

u/’[\
36' n11235710 1317 21 26 31 37 43 50 57 65 73 82 91 (28)

The repeating differences observed between n values in the “order” sequence (28) suggest that two
“sequences exist, one for m odd and one for m even.

For m odd, let h = (m+1)/2 so that h varies as 1, 2, 3, ... as m takeson 1, 3, 5, ... The
order calculation is so simple that the difference triangle method quickly shows A2 = 0 and
thereby indicates an elementary third order recursion for the sequences of n for m odd. By
observing the difference behavior, the missing “a;” can be found and included. Now, by using a,
=1,a; = 1, a, = 3, and in (22) replacing “n” by three and d by h, the general sequence term for
the odd m sequence appears as

(2) (2 (2)
(he2) - 2(h;1) )+ 3(n) — h?—hel, (29)

Ao 3
na

L'-

x7%

4
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When h is replaced by (m+1)/2, the general order value, n, for second kind sequences for odd m
becomes

n = (m®+3)/4. , (30)
A repeat of the process using m even and h — m/2 yields
n = (m*+4)/4. (31)

By combining (30) and (31), the recursion order, n, for any m for second kind sequences of (S;)m
becomes

- m? 4 3.5 + (—1)'"(0.5). (32)

Now, for any specified m, the exact number, n, of sequence terms, (Sg)m, (S)m, ...,
(Sp-1)m, can be calculated from (5) or (6) to serve as initial constants for an almost at sight
development of homogeneous difference equations [sec (19)], generating functions in 1/z [sce (20)],
and general sequence term values [see (21) or (22)].

6. HOGGATT POSITION SEQUENCES

Expression (7) determines the value of the integer in the pth position of the mth row of a
dth order Hoggatt triangle and assigns the ordered functional designation, P(m, p, d). The
sequences formed by P(m, p, d) values with m and p fixed and variable d = 0, 1, 2, 3, ... are
called Hoggatt position sequences. Fortunately, they exhibit elementary recursion so that the
methods of previous sections can be used to again obtain general expressions for recursion order,
n, homogeneous difference equations, generating functions, and sequence terms.  As belore, the
ultimate goal is the ability to write the expressions almost by inspection once n and the first n
sequence terms are available.

As illustrations, portions of position sequences can be observed in Figure 1. If m = 2, p
= 2, the integers of sequence 1, 6, 20, 50, 105, 196, ... are set off by rectangular enclosures, while
for m = 5, p = 1 oval enclosures are used to enclose the sequence 1, 5, 15, 20, 70, 126, ... While
the definition of position sequences is global with respect to d, an interesting feature is that any
particular position sequence has an equal, matching diagonal sequence completely contained in
some Hoggatt triangle. This property is identified in Figure 1 for the above position sequences for
the diagonal sequence in triangle two by a rectangular enclosure and for triangle four by an oval
enclosure. These phenomena have the practical aspect of making two observational and
calculation approaches available.

A position sequence term can be distinguished from a diagonal sequence term by choosing
P(mn, Py, d) for the position term and P(m, py, d,) for the diagonal term where m,, p;, p, and
d, are constants. Because of symmetry of Hoggatt triangles about a central, “vertical” axis [1],
we restrict our position sequence computations to 0 < p < m/2 for m even and to 0 < p <
(m—1)/2 for m odd. The matching diagonal sequences proceed from upper right to lower left.

At the integer of intersection of a position sequence with its matching equal diagonal
sequence, m = m;, d = d,, and p, = py. Since p, and p, are constants, they can be replaced by
a general constant, p. Also the integer of intersection must be the d, term of cach sequence since
the intersection takes place in the dth triangle. Counting back along the diagonal sequence from
the intersection integer determines the starting m of the diagonal sequence as m;, — d;. Since
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the diagonal sequence must start on the extreme right of the d th triangle, the m value for that
row of the d th triangle fixes p as

p=m, — ddv (33)

with p also the starting value of m of the diagonal sequence. The order of the triangle in which
intersection takes place is, thereby,

d,=my, — p, (34)

where m, and p are established position sequence constants. Correspondingly, if a diagonal
sequence is already specified, the m, of its matching position sequence is given as

mhzdd+p. (35)

With release of the position restriction and with p taken as m/2 < p < m for m even, or
(m—1)/2 < p < m for m odd, it is scen that the matching diagonal sequences start on the upper
left and proceed to the lower right.

As an illustration of (35), the diagonal shown on Figure 1 for d = 4 starting with 1, 35,
490, ... has p = 3, d; = 4 which results in m,; = 7. The matching position sequence
representation is P(7, 3, d) which is beyond the limits of Figure 1. However, calculations made
using (7) verify the first few terms of the position sequence as 1, 35, 490, 4116, 24696, 116424,
457380, ...

The remaining study of position sequences is devoted to finding the general expression for
recursion order, n, as a function of m and p. Through use of the order algorithm, the orders of
position sequences P(m, p, d) were calculated in m increments from zero through nine with p
subincrements (for each m) from zero through m/2 for m even and through (m—1)/2 for m odd.
The full range of p was not needed because of Hoggatt triangle symmetry. The values of
recursion order, n, for the ranges of m and p are given in (36).

m
0 1 2 3 4 5 6 7 8 9
pO0 T 1T 1T 1T 1T T T 1T T 1
1 1 2 3 4 5 6 7 8 9
2 1 3 5 7 911 13 15
3 I 4 7 10 13 16 19 « n values (36)
4 1 56 913 17 21
) 1 6 11 16 21
6 1 7 13 19
7 1 8 15
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Each of the sequences of n values with m assuming the role of index is seen to have an elementary
recursion of order two, with the first difference identically p regardless of m. The “a,, a,” first
two terms are always 1 and 1 + p. However, the starting index for each sequence changes with m
which is not consistent with our methods. To force a starting index of zero for each sequence, the
index must be adjusted to m — p. When this is done, replacement of d by m — p, replacement
of “n” by 2, substitution of 1 and 1 + p for a, and a; in (22) yields the general n as

n = (m~p+1)ag + (m—p)(a; —2ay) = (m—p+1) + (m—p)(p—1) = (m—p)p + L. (37)

Thus the order of any Hoggatt position sequence P(m, p, d) can be specified directly in terms of
its fixed m and p parameters. To further aid in visual identification, (37) is arranged in (38) as
an “order” triangle, allowing the order, n, of a position sequence, P(m, p, d), to be selected at
sight from the mth row, pth position integer.

m

0 1 ' W S ” *.--.
1 1 A J 77() 20
2 1 2 1 {

3 1 3 3 1

4 1 4 5 4 1 (38)
5 1 5 7 7 5 1

6 1 6 9 10 9 6 1

7 1 7 11 13 13 11 7 1

8 1 8 13 16 17 16 13 8 1

9 1 9 15 19 21 21 19 15 9 1

Now that the recursion order for Hoggatt position sequences is established as (m—p)p +
1, it is possible to state a set of initial conditions, the homogeneous difference equation, the
generating function in 1/z, and the general sequence term for any Hoggatt position sequence.

The Hoggatt position sequences seemn to have some value in counting specialized
distributions of objects. As a parting, proverbial “exercise for the reader,” deduce the P(m, p, d)
position sequence for which the a, [or P(m, d, r)] term answers the following:

In how many ways can r indistinct objects be distributed in six distinct cells with five of
the cells permitted any occupancy (including none) but with the sixth cell permitted either no
occupancy or single occupancy?

7. CONCLUSIONS

We have introduced two new classes of sequences, Hoggatt second kind sequences and
Hoggatt position sequences. Even though we have classified the sequences as having the most
elementary form of recursion, each sequence has exhibited an interesting behavior. An order
algorithm developed for use with the sequences provided data for completing the specifications of
homogeneous difference equations, generating functions, and formulas for general terms for the
sequences.
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